当先锋百科网

首页 1 2 3 4 5 6 7

关于作者:PythonKing,Python高手大师

在使用Pandas之前,需要导入Pandas包。惯例是将pandas简写为pd,命令如下:



importpandasaspd



Pandas包含两个主要的数据结构:SeriesDataFrame。其中最常用的是DataFrame,下面我们先来学习一下DataFrame。





01DataFrame入门



DataFrame是一个表格型的数据结构。每列都可以是不同的数据类型(数值、字符串、布尔值等)。



DataFrame既有行索引也有列索引,这两种索引在DataFrame的实现上,本质上是一样的。但在使用的时候,往往是将列索引作为区分不同数据的标签。DataFrame的数据结构与SQL数据表或者Excel工作表的结构非常类似,可以很方便地互相转换。



下面先来创建一个DataFrame,一种常用的方式是使用字典,这个字典是由等长的list或者ndarray组成的,示例代码如下:



data={'A':['x','y','z'],'B':[1000,2000,3000],'C':[10,20,30]}
df=pd.DataFrame(data,index=['a','b','c'])
df



运行结果如图3-2所示。



▲图3-2



我们可以看到,DataFrame主要由如下三个部分组成。



  • 数据,位于表格正中间的9个数据就是DataFrame的数据部分。
  • 索引,最左边的a、b、c是索引,代表每一行数据的标识。这里的索引是显式指定的。如果没有指定,会自动生成从0开始的数字索引。
  • 列标签,表头的A、B、C就是标签部分,代表了每一列的名称。



下文列出了DataFrame函数常用的参数。其中,“类似列表”代表类似列表的形式,比如列表、元组、ndarray等。一般来说,data、index、columns这三个参数的使用频率是最高的。



  • data:ndarray/字典/类似列表|DataFrame数据;数据类型可以是ndarray、嵌套列表、字典等
  • index:索引/类似列表|使用的索引;默认值为range(n)
  • columns:索引/类似列表|使用的列标签;默认值为range(n)
  • dtype:dtype|使用(强制)的数据类型;否则通过推导得出;默认值为None
  • copy:布尔值|从输入复制数据;默认值为False



其中data的数据类型有很多种。



下文列举了可以作为data传给DataFrame函数的数据类型



可以传给DataFrame构造器的数据:



  • 二维ndarray:可以自行指定索引和列标签
  • 嵌套列表或者元组:类似于二维ndarray
  • 数据、列表或元组组成的字典:每个序列变成一列。所有序列长度必须相同
  • 由Series组成的字典:每个Series会成为一列。如果没有指定索引,各Series的索引会被合并
  • 另一个DataFrame:该DataFrame的索引将会被沿用



前面生成了一个DataFrame,变量名为df。下面我们来查看一下df的各个属性值。



获取df数据的示例代码如下:



df.values



输出结果如下:



array([['x',1000,10],
['y',2000,20],
['z',3000,30]],dtype=object)



获取df行索引的示例代码如下:



df.index



输出结果如下:



Index(['a','b','c'],dtype='object')



获取df列索引(列标签)的示例代码如下:



df.columns



输出结果如下:



Index(['A','B','C'],dtype='object')



可以看到,行索引和列标签都是Index数据类型。



创建的时候,如果指定了列标签,那么DataFrame的列也会按照指定的顺序进行排列,示例代码如下:



df=pd.DataFrame(data,columns=['C','B','A'],index=['a','b','c'])
df



运行结果如图3-3所示。



▲图3-3



如果某列不存在,为其赋值,会创建一个新列。我们可以用这种方法来添加一个新的列:



df['D']=10
df



运行结果如图3-4所示。



▲图3-4



使用del命令可以删除列,示例代码如下:



deldf['D']
df



运行结果如图3-5所示。



▲图3-5



添加行的一种方法是先创建一个DataFrame,然后再使用append方法,代码如下:



new_df=pd.DataFrame({'A':'new','B':4000,'C':40},index=['d'])
df=df.append(new_df)
df



运行结果如图3-6所示。



▲图3-6



或者也可以使用loc方法来添加行,示例代码如下:



df.loc['e']=['new2',5000,50]
df



运行结果如图3-7所示。



▲图3-7



loc方法将在后面的内容中详细介绍。



索引的存在,使得Pandas在处理缺漏信息的时候非常灵活。下面的示例代码会新建一个DataFrame数据df2。



df2=pd.DataFrame([1,2,3,4,5],index=['a','b','c','d','z'],columns=['E'])
df2



运行结果如图3-8所示。



▲图3-8



如果现在想要合并df和df2,使得df有一个新的列E,那么可以使用join方法,代码如下:



df.join(df2)



运行结果如图3-9所示。



▲图3-9



可以看到,df只接受索引已经存在的值。由于df2中没有索引e,所以是NaN值,而且df2索引为z的值已经丢失了。为了保留df2中索引为z的值,我们可以提供一个参数,告诉Pandas如何连接。示例代码如下:



df.join(df2,how='outer')



运行结果如图3-10所示。



▲图3-10



在上述代码中,how='outer'表示使用两个索引中所有值的并集。连接操作的其他选项还有inner(索引的交集)、left(默认值,调用方法的对象的索引值)、right(被连接对象的索引值)等。



在金融数据分析中,我们要分析的往往是时间序列数据。下面介绍一下如何基于时间序列生成DataFrame。为了创建时间序列数据,我们需要一个时间索引。这里先生成一个DatetimeIndex对象的日期序列,代码如下:



dates=pd.date_range('20160101',periods=8)
dates



输出结果如下:



DatetimeIndex(['2016-01-01','2016-01-02','2016-01-03','2016-01-04',
'2016-01-05','2016-01-06','2016-01-07','2016-01-08'],dtype='da
tetime64[ns]',freq='D')



可以看到,使用Pandas的date_range函数生成的是一个DatetimeIndex对象。date_range函数的参数及说明如下所示:



  • start:字符串/日期时间|开始日期;默认为None
  • end:字符串/日期时间|结束日期;默认为None
  • periods:整数/None|如果start或者end空缺,就必须指定;从start开始,生成periods日期数据;默认为None
  • freq:dtype|周期;默认是D,即周期为一天。也可以写成类似5H的形式,即5小时。其他的频率参数见下文
  • tz:字符串/None|本地化索引的时区名称
  • normalize:布尔值|将start和end规范化为午夜;默认为False
  • name:字符串|生成的索引名称



date_range函数频率的参数及说明如下所示:



  • B:交易日
  • C:自定义交易日(试验中)
  • D:日历日
  • W:每周
  • M:每月底
  • SM:半个月频率(15号和月底)
  • BM:每个月份最后一个交易日
  • CBM:自定义每个交易月
  • MS:日历月初
  • SMS:月初开始的半月频率(1号,15号)
  • BMS:交易月初
  • CBMS:自定义交易月初
  • Q:季度末
  • BQ:交易季度末
  • QS:季度初
  • BQS:交易季度初
  • A:年末
  • BA:交易年度末
  • AS:年初
  • BAS:交易年度初
  • BH:交易小时
  • H:小时
  • T,min:分钟
  • S:
  • L,ms:毫秒
  • U,us:微秒
  • N:纳秒



接下来,我们再基于dates来创建DataFrame,代码如下:



df=pd.DataFrame(np.random.randn(8,4),index=dates,columns=list('ABCD'))
df



运行结果如图3-11所示。



▲图3-11



有了df,我们就可以使用多个基于DataFrame的内建方法了,下面来看看相关的示例。



按列求总和,代码如下:



df.sum()



输出结果如下:



A0.241727
B-0.785350
C-0.547433
D-1.449231
dtype:float64



按列求均值,代码如下:



df.mean()



输出结果如下:



A0.030216
B-0.098169
C-0.068429
D-0.181154
dtype:float64



按列求累计总和,代码如下:



df.cumsum()



运行结果如图3-12所示。



▲图3-12



使用describe一键生成多种统计数据,代码如下:



df.describe()



运行结果如图3-13所示。



▲图3-13



可以根据某一列的值进行排序,代码如下:



df.sort_values('A')



运行结果如图3-14所示。



▲图3-14



根据索引(日期)排序(这里是倒序),代码如下:



df.sort_index(ascending=False)



运行结果如图3-15所示。



▲图3-15



选取某一列,返回的是Series对象,可以使用df.A,代码如下:



df['A']



输出结果如下:



2016-01-01-1.142350
2016-01-02-0.816178
2016-01-030.030206
2016-01-041.930175
2016-01-050.571512
2016-01-060.220445
2016-01-070.292176
2016-01-08-0.844260
Freq:D,Name:A,dtype:float64



使用[]选取某几行,代码如下:



df[0:5]



运行结果如图3-16所示。



▲图3-16



根据标签(Label)选取数据,使用的是loc方法,代码如下:



df.loc[dates[0]]



输出结果如下:



A-1.142350
B-1.999351
C0.772343
D-0.851840
Name:2016-01-0100:00:00,dtype:float64



再来看两个示例代码。



df.loc[:,['A','C']]



运行结果如图3-17所示。



▲图3-17



df.loc['20160102':'20160106',['A','C']]



运行结果如图3-18所示。



▲图3-18



需要注意的是,如果只有一个时间点,那么返回的值是Series对象,代码如下:



df.loc['20160102',['A','C']]



输出结果如下:



A-0.816178
C-0.595195
Name:2016-01-0200:00:00,dtype:float64



如果想要获取DataFrame对象,需要使用如下命令:



df.loc['20160102':'20160102',['A','C']]



运行结果如图3-19所示。



▲图3-19



上面介绍的是loc方法,是按标签(索引)来选取数据的。有时候,我们会希望按照DataFrame的绝对位置来获取数据,比如,如果想要获取第3行第2列的数据,但不想按标签(索引)获取,那么这时候就可以使用iloc方法。



根据位置选取数据,代码如下:



df.iloc[2]



输出结果如下:



A0.030206
B0.759953
C-1.446549
D-0.874364
Name:2016-01-0300:00:00,dtype:float64



再来看一个示例:



df.iloc[3:6,1:3]



运行结果如图3-20所示。



▲图3-20



注意:对于DataFrame数据类型,可以使用[]运算符来进行选取,这也是最符合习惯的。但是,对于工业代码,推荐使用loc、iloc等方法。因为这些方法是经过优化的,拥有更好的性能。



有时,我们需要选取满足一定条件的数据。这个时候可以使用条件表达式来选取数据。这时传给df的既不是标签,也不是绝对位置,而是布尔数组(BooleanArray)。下面来看一下示例。



例如,寻找A列中值大于0的行。首先,生成一个布尔数组,代码如下:



df.A>0



输出结果如下:



2016-01-01False
2016-01-02False
2016-01-03True
2016-01-04True
2016-01-05True
2016-01-06True
2016-01-07True
2016-01-08False
Freq:D,Name:A,dtype:bool



可以看到,这里生成了一个Series类型的布尔数组。可以通过这个数组来选取对应的行,代码如下:



df[df.A>0]



运行结果如图3-21所示。



▲图3-21



从结果可以看到,A列中值大于0的所有行都被选择出来了,同时也包括了BCD列。



现在我们要寻找df中所有大于0的数据,先生成一个全数组的布尔值,代码如下:



df>0



运行结果如图3-22所示。



▲图3-22



下面来看一下使用df>0选取出来的数据效果。由图3-23可以看到,大于0的数据都能显示,其他数据显示为NaN值。



df[df>0]



运行结果如图3-23所示。



▲图3-23



再来看一下如何改变df的值。首先我们为df添加新的一列E,代码如下:



df['E']=0
df



运行结果如图3-24所示。



▲图3-24



使用loc改变一列值,代码如下:



df.loc[:,'E']=1
df



运行结果如图3-25所示。



▲图3-25



使用loc改变单个值,代码如下:



df.loc['2016-01-01','E']=2
df



运行结果如图3-26所示。



▲图3-26



使用loc改变一列值,代码如下:



df.loc[:,'D']=np.array([2]*len(df))
df



运行结果如图3-27所示。



▲图3-27



可以看到,使用loc的时候,x索引和y索引都必须是标签值。对于这个例子,使用日期索引明显不方便,需要输入较长的字符串,所以使用绝对位置会更好。这里可以使用混合方法,DataFrame可以使用ix来进行混合索引。比如,行索引使用绝对位置,列索引使用标签,代码如下:



df.ix[1,'E']=3
df



运行结果如图3-28所示。



▲图3-28



ix的处理方式是,对于整数,先假设为标签索引,并进行寻找;如果找不到,就作为绝对位置索引进行寻找。所以运行效率上会稍差一些,但好处是这样操作比较方便。



对于ix的用法,需要注意如下两点。



  • 假如索引本身就是整数类型,那么ix只会使用标签索引,而不会使用位置索引,即使没能在索引中找到相应的值(这个时候会报错)。
  • 如果索引既有整数类型,也有其他类型(比如字符串),那么ix对于整数会直接使用位置索引,但对于其他类型(比如字符串)则会使用标签索引。



总的来说,除非想用混合索引,否则建议只使用loc或者iloc来进行索引,这样可以避免很多问题。





02Series



Series类似于一维数组,由一组数据以及相关的数据标签(索引)组成。示例代码如下:



importpandasaspd
s=pd.Series([1,4,6,2,3])
s



Out:



01
14
26
32
43



在这段代码中,我们首先导入pandas并命名为pd,然后向Series函数传入一个列表,生成一个Series对象。在输出Series对象的时候,左边一列是索引,右边一列是值。由于没有指定索引,因此会自动创建0到(N-1)的整数索引。也可以通过Series的values和index属性获取其值和索引。示例代码如下:



s.values



Out:



array([1,4,6,2,3],dtype=int64)



s.index



Out:



Int64Index([0,1,2,3,4],dtype='int64')



当然,我们也可以对索引进行定义,代码如下:



s=pd.Series([1,2,3,4],index=['a','b','c','d'])
s



Out:



a1
b2
c3
d4



在这里,我们将索引定义为a、b、c、d。这时也可以用索引来选取Series的数据,代码如下:



s['a']



Out:



1



s[['b','c']]



Out:

b2
c3



对Series进行数据运算的时候也会保留索引。示例代码如下:



s[s>1]



Out:



b2
c3
d4



s*3



Out:



a3
b6
c9
d12



Series最重要的功能之一是在不同索引中对齐数据。示例代码如下:



s1=pd.Series([1,2,3],index=['a','b','c'])
s2=pd.Series([4,5,6],index=['b','c','d'])
s1+s2



Out:



aNaN
b6
c8
dNaN



Series的索引可以通过赋值的方式直接修改,示例代码如下:



s.index



Out:



Index([u'a',u'b',u'c',u'd'],dtype='object')



s.index=['w','x','y','z']
s.index



Out:



Index([u'w',u'x',u'y',u'z'],dtype='object')



s



Out:



w1x2y3z4