当先锋百科网

首页 1 2 3 4 5 6 7

人脸识别是目前AI技术应用中比较常见的场景之一,在入口检查、在线支付、用户校验等方面都有人脸识别的影子!但目前人脸识别至少还有以下挑战;

1、隐私安全

既然是人脸,就一定涉及到个人隐私的问题。随着信息化越来越普及,个人大数据在不同的平台上都会有不同程度的留存,此时如何保证个人隐私在互联网上的安全,是需要人脸识别技术和相关法律法规去完善和管理的,但目前这部分尚处于初级阶段。还需要全社会从认知到技术都提高才能解决。

应用场景

在人脸识别精准度上,高度依赖应用场景,笔者曾测试过一款平台型智能机器人,号称集成了最NB的人脸识别技术和摄像头,在昏暗的光线下也可以有很高的识别准确率,有一次当机器人移动到门口的时候,我从屋里向屋外走动,当我走到机器人面前,一半面部有太阳光照射,而另一半则处于黑暗状态。同时机器人的角度是激光拍摄,就这样它失败了!多次测试结果均如此。而当一个人从暗黑的环境向强光环境移动,而摄像角度在强光下时,识别效果很差,这说明人脸识别的适应性和准确度还可有很大提高空间。

用户体验

人脸识别的用户体验也是一个挑战。大家在过机场安检偶尔会有这样的尴尬,明明一切操作正常,但走到识别通道那儿就是过不去,这可能会有几种原因:1、因为网络传输问题,不能及时将最准确的照片上传导致检测结果显示较慢;2、当用户做过整容手术,面部轮廓和深度特征有较大变化时,就可能检测出错;3、检测设备识别范围有限(大了会存在多张人脸的情况,小了人脸取景不完整),此时就需要用户或弯腰,或垫脚,或移动来适应摄像头,这就像在爬坡时需要人扛自行车一样!由于人品识别的应用场景非常广泛,如何做到全场景提供最好的用户体验,仍然是目前人品识面临的挑战之一。

其他实现算法、效率、精准度等都可以随着大数据应用、计算力加强而逐步得到解决,但目前仍是部分挑战!