当先锋百科网

首页 1 2 3 4 5 6 7

本文内容参考自: https://gitee.com/macrozheng/mall

如有侵权,请联系作者删除

项目中所使用代码已开源 : https://gitee.com/szwei/elasticsearch

项目中使用依赖版本:

依赖版本
spring-boot2.3.1.RELEASE
elasticsearch7.9.3-windows-x86_64
kibana7.8.0-windows-x86_64

一、介绍

回忆时光

许多年前,一个刚结婚的名叫 Shay Banon 的失业开发者,跟着他的妻子去了伦敦,他的妻子在那里学习厨师。 在寻找一个赚钱的工作的时候,为了给他的妻子做一个食谱搜索引擎,他开始使用 Lucene 的一个早期版本。

直接使用 Lucene 是很难的,因此 Shay 开始做一个抽象层,Java 开发者使用它可以很简单的给他们的程序添加搜索功能。 他发布了他的第一个开源项目 Compass。

后来 Shay 获得了一份工作,主要是高性能,分布式环境下的内存数据网格。这个对于高性能,实时,分布式搜索引擎的需求尤为突出, 他决定重写 Compass,把它变为一个独立的服务并取名 Elasticsearch。

第一个公开版本在2010年2月发布,从此以后,Elasticsearch 已经成为了 Github 上最活跃的项目之一,他拥有超过300名 contributors(目前736名 contributors )。 一家公司已经开始围绕 Elasticsearch 提供商业服务,并开发新的特性,但是,Elasticsearch 将永远开源并对所有人可用。

据说,Shay 的妻子还在等着她的食谱搜索引擎…

不得不说,Elasticsearch 的作者是一个很幽默的人,大概这就是大佬普遍的特性吧,随手一写,就可以开发出足以影响世界的代码。

ES 的特性:

  • 一个分布式的实时文档存储,每个字段 可以被索引与搜索
  • 一个分布式实时分析搜索引擎
  • 能胜任上百个服务节点的扩展,并支持 PB 级别的结构化或者非结构化数据

二、安装

注意: Elasticsearch 的版本和 springboot 版本 和 Spring Data Elasticsearch 版本需要对应,否则会有各种各样未知错误

Spring Data Release TrainSpring Data ElasticsearchElasticsearchSpring Boot
2020.0.0[1]4.1.x[1]7.9.32.4.x[1]
Neumann4.0.x7.6.22.3.x
Moore3.2.x6.8.122.2.x
Lovelace3.1.x6.2.22.1.x
Kay[2]3.0.x[2]5.5.02.0.x[2]
Ingalls[2]2.1.x[2]2.4.01.5.x[2]

1. 安装 Elasticsearch

​ 下载地址:

官网下载地址(不推荐,较慢)

华为镜像加速(推荐,速度 嗖嗖嗖~~)

  • 首先通过官网下载 需要的版本,笔者下载的是Windows 版本的,等待下载完成

  • Windows 版本下载好之后,解压文件夹,双击 bin 目录下的 elasticsearch.bat 启动 ES

  • 等待启动完成后,访问 http://localhost:9200

    image-20201211104844790

看到这个返回结果,就是启动完成了。

安装中文分词器,elasticsearch-analysis-ik

下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases

下载相对应的版本后,解压,在 elasticsearch 的安装目录,plugins 目录下新建 ik 文件夹,将解压后的文件放到里面,重启 ES

那么现在我们还差一个可视化界面

2.安装 kibana

​ 同样的国外的较慢,直接华为下载 => 华为kibana镜像

​ 下载后,解压

​ bin 目录,kibana.bat 启动,kibana 会自动的连接我们刚刚启动的 ES

​ 看到这个页面,说明启动完成

image-20201211105607430

访问 http://localhost:5601/ 即可看到页面

我们选择 左侧的 Dev Tools 进入命令输入页面

image-20201211105834109

三、简单使用

索引操作

  1. 列出所有索引

    GET /_cat/indices

  2. 创建新的索引

    PUT /mygoods

  3. 查询某个索引信息

    GET /mygoods

  4. 删除某个索引

    DELETE /mygoods

文档操作

  1. 添加文档

    PUT /mygoods2/_doc/188
    {
      "id":"188",
      "name":"添加索引文档",
      "price":"188",
      "keywords":"添加索引文档",
      "subtitle":"添加索引文档",
      "brandId" : 7,
      "categoryId" : 5
    }
    
  2. 删除文档

    DELETE /mygoods/_doc/188

  3. 简单查询

    1. 查询单个

    GET /mygoods/_doc/188

    1. 查询所有

    GET /mygoods/_search

  4. 表达式查询

    1. 查询所有

      GET /mygoods/_search
      {
          "query" : {
             "match_all": {}
          }
      }
      
    2. 查询条件查询

      GET /mygoods/_search
      {
          "query" : {
              "match" : {
                  "name" : "添加索引"
              }
          }
      }
      

四、Springboot 中使用

### 1. 引入依赖

查询Springboot 和 Spring Data Elasticsearch 版本,下载对应的 ES , 引入依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>

2. 新建实体类

package cn.couldme.es.entity;

import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import lombok.EqualsAndHashCode;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.Field;
import org.springframework.data.elasticsearch.annotations.FieldType;

import java.io.Serializable;

/**
 * 商品表(Goods)表实体类
 *
 * @Author szwei
 * @Date 2020-12-06 21:45:37
 */
@Data
@TableName
@EqualsAndHashCode(callSuper = false)
@Document(indexName = "mygoods",type = "_doc", shards = 1,replicas = 0)
public class Goods implements Serializable {

    private static final long serialVersionUID = -1; 
    /**
    * 自增 => @TableId(type = IdType.AUTO)
    */
    @TableId
    private Long id;
        
    /*名称*/
    @Field(analyzer = "ik_max_word",type = FieldType.Text)
    private String name;
        
    /*价格*/    
    private Double price;
        
    /*关键词*/
    @Field(analyzer = "ik_max_word",type = FieldType.Text)
    private String keywords;
        
    /*标题*/
    @Field(analyzer = "ik_max_word",type = FieldType.Text)
    private String subtitle;
        
    /*品牌商*/
    @Field(type=FieldType.Keyword)
    private Long brandId;
        
    /*分类名称*/
    @Field(type=FieldType.Keyword)
    private Long categoryId;
}

3. 继承 ElasticsearchRepository

package cn.couldme.es.repository;

import cn.couldme.es.entity.Goods;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;

/**
 * 搜索商品ES操作类
 * Created by macro on 2018/6/19.
 */
public interface EsGoodsRepository extends ElasticsearchRepository<Goods, Long> {
    /**
     * 搜索查询
     *
     * @param name              商品名称
     * @param keywords          商品关键字
     * @param page              分页信息
     */
    Page<Goods> findByNameOrKeywords(String name, String keywords, Pageable page);

}

4. EsGoodstService

package cn.couldme.es.service;

import cn.couldme.es.entity.Goods;
import org.springframework.data.domain.Page;

import java.util.List;

/**
 * 搜索商品管理Service
 * Created by macro on 2018/6/19.
 */
public interface EsGoodstService {
    /**
     * 从数据库中导入所有商品到ES
     */
    int importAll();

    /**
     * 根据id删除商品
     */
    void delete(Long id);

    /**
     * 根据id创建商品
     */
    Goods create(Long id);

    /**
     * 批量添加商品
     */
    void batchCreate(List<Long> ids);

    /**
     * 批量删除商品
     */
    void batchDelete(List<Long> ids);

    /**
     * 根据关键字搜索名称或者副标题
     */
    Page<Goods> search(String keyword, Integer pageNum, Integer pageSize);

    /**
     * 根据关键字搜索名称或者副标题复合查询
     */
    Page<Goods> search(String keyword, Long brandId, Long categoryId, Integer pageNum, Integer pageSize, Integer sort);

    /**
     * 根据商品id推荐相关商品
     */
    Page<Goods> recommend(Long id, Integer pageNum, Integer pageSize);

}


5. EsGoodstServiceImpl

@Slf4j
@Service
public class EsGoodstServiceImpl implements EsGoodstService {

    @Autowired
    private GoodsMapper goodsMapper;
    @Autowired
    private EsGoodsRepository productRepository;
    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;
    @Override
    public int importAll() {
        List<Goods> GoodsList = goodsMapper.selectList(null);
        Iterable<Goods> GoodsIterable = productRepository.saveAll(GoodsList);
        Iterator<Goods> iterator = GoodsIterable.iterator();
        int result = 0;
        while (iterator.hasNext()) {
            result++;
            iterator.next();
        }
        return result;
    }

    @Override
    public void delete(Long id) {
        productRepository.deleteById(id);
    }

    @Override
    public Goods create(Long id) {
        Goods result = null;
        Goods goods = goodsMapper.selectById(id);
        result = productRepository.save(goods);

        return result;
    }

    @Override
    public void batchCreate(List<Long> ids) {
        if (!CollectionUtils.isEmpty(ids)) {
            List<Goods> spxxList = goodsMapper.selectBatchIds(ids);
            productRepository.saveAll(spxxList);
        }
    }

    @Override
    public void batchDelete(List<Long> ids) {
        if (!CollectionUtils.isEmpty(ids)) {
            List<Goods> GoodsList = new ArrayList<>();
            for (Long id : ids) {
                Goods goods = new Goods();
                goods.setId(id);
                GoodsList.add(goods);
            }
            productRepository.deleteAll(GoodsList);
        }
    }

    @Override
    public Page<Goods> search(String keyword, Integer pageNum, Integer pageSize) {
        Pageable pageable = PageRequest.of(pageNum, pageSize);
        return productRepository.findByNameOrKeywords(keyword, keyword, pageable);
    }

    @Override
    public Page<Goods> search(String keyword, Long brandId, Long categoryId, Integer pageNum, Integer pageSize, Integer sort) {
        Pageable pageable = PageRequest.of(pageNum, pageSize);
        NativeSearchQueryBuilder nativeSearchQueryBuilder = new NativeSearchQueryBuilder();
        //分页
        nativeSearchQueryBuilder.withPageable(pageable);
        nativeSearchQueryBuilder.withSort(SortBuilders.scoreSort());
        //过滤
        if (brandId != null || categoryId != null) {
            BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
            if (brandId != null) {
                boolQueryBuilder.must(QueryBuilders.termQuery("brandId", brandId));
            }
            if (categoryId != null) {
                boolQueryBuilder.must(QueryBuilders.termQuery("categoryId", categoryId));
            }
            nativeSearchQueryBuilder.withFilter(boolQueryBuilder);
        }
        //搜索
        if (StringUtils.isEmpty(keyword)) {
            nativeSearchQueryBuilder.withQuery(QueryBuilders.matchAllQuery());
        } else {

            List<FunctionScoreQueryBuilder.FilterFunctionBuilder> filterFunctionBuilders = new ArrayList<>();
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("name", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(10)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("subTitle", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(5)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("keywords", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(2)));
            FunctionScoreQueryBuilder.FilterFunctionBuilder[] builders = new FunctionScoreQueryBuilder.FilterFunctionBuilder[filterFunctionBuilders.size()];
            filterFunctionBuilders.toArray(builders);
            MultiMatchQueryBuilder matchQuery = QueryBuilders.multiMatchQuery(keyword, "name", "subTitle", "keywords");
            FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery(matchQuery,builders)
                    .scoreMode(FunctionScoreQuery.ScoreMode.SUM)
                    .setMinScore(2);
            nativeSearchQueryBuilder.withQuery(functionScoreQueryBuilder);
        }
        //排序
        if(sort==1){
            //按新品从新到旧
            nativeSearchQueryBuilder.withSort(SortBuilders.fieldSort("id").order(SortOrder.DESC));
        }else if(sort==2){
            //按销量从高到低
            nativeSearchQueryBuilder.withSort(SortBuilders.fieldSort("sale").order(SortOrder.DESC));
        }else if(sort==3){
            //按价格从低到高
            nativeSearchQueryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.ASC));
        }else if(sort==4){
            //按价格从高到低
            nativeSearchQueryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.DESC));
        }else{
            //按相关度
            nativeSearchQueryBuilder.withSort(SortBuilders.scoreSort().order(SortOrder.DESC));
        }
        nativeSearchQueryBuilder.withSort(SortBuilders.scoreSort().order(SortOrder.DESC));
        NativeSearchQuery searchQuery = nativeSearchQueryBuilder.build();
        log.info("DSL:{}", searchQuery.getQuery().toString());
        SearchHits<Goods> searchHits = elasticsearchRestTemplate.search(searchQuery, Goods.class);
        if(searchHits.getTotalHits()<=0){
            return new PageImpl<>(new ArrayList<>(),pageable,0);
        }
        List<Goods> searchProductList = searchHits.stream().map(SearchHit::getContent).collect(Collectors.toList());
        return new PageImpl<>(searchProductList,pageable,searchHits.getTotalHits());
    }


    @Override
    public Page<Goods> recommend(Long id, Integer pageNum, Integer pageSize) {
        Pageable pageable = PageRequest.of(pageNum, pageSize);
        Goods goods = goodsMapper.selectById(id);
        if (Objects.nonNull(goods)) {
            String keyword = goods.getName();
            Long brandId = goods.getBrandId();
            Long categoryId = goods.getCategoryId();
            //根据商品标题、品牌、分类进行搜索
            List<FunctionScoreQueryBuilder.FilterFunctionBuilder> filterFunctionBuilders = new ArrayList<>();
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("name", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(8)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("subTitle", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(2)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("keywords", keyword),
                    ScoreFunctionBuilders.weightFactorFunction(2)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("brandId", brandId),
                    ScoreFunctionBuilders.weightFactorFunction(5)));
            filterFunctionBuilders.add(new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.matchQuery("productCategoryId", categoryId),
                    ScoreFunctionBuilders.weightFactorFunction(3)));
            FunctionScoreQueryBuilder.FilterFunctionBuilder[] builders = new FunctionScoreQueryBuilder.FilterFunctionBuilder[filterFunctionBuilders.size()];
            filterFunctionBuilders.toArray(builders);
            //设置查询条件
            QueryBuilder queryBuilder = QueryBuilders.boolQuery()
                    .must(QueryBuilders.multiMatchQuery(keyword,"name","subTitle","keywords"));
//                    .should(QueryBuilders.matchQuery("brandId", brandId))
//                    .should(QueryBuilders.matchQuery("categoryId", categoryId));
            FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery(queryBuilder, builders)
                    .scoreMode(FunctionScoreQuery.ScoreMode.SUM)
                    .setMinScore(2);
            //用于过滤掉相同的商品
            BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder();
            boolQueryBuilder.mustNot(QueryBuilders.termQuery("id",id));
            //构建查询条件
            NativeSearchQueryBuilder builder = new NativeSearchQueryBuilder();

            builder.withQuery(functionScoreQueryBuilder);
            builder.withFilter(boolQueryBuilder);
            builder.withPageable(pageable);
            NativeSearchQuery searchQuery = builder.build();
            log.info("DSL:{}", searchQuery.getQuery().toString());
            SearchHits<Goods> searchHits = elasticsearchRestTemplate.search(searchQuery, Goods.class);
            if(searchHits.getTotalHits()<=0){
                return new PageImpl<>(new ArrayList<>(),pageable,0);
            }
            List<Goods> searchProductList = searchHits.stream().map(SearchHit::getContent).collect(Collectors.toList());
            return new PageImpl<>(searchProductList,pageable,searchHits.getTotalHits());
        }
        return new PageImpl<>(new ArrayList<>());
    }
}

6. 事件通知类

添加商品事件

package cn.couldme.core.event;

import lombok.Getter;
import org.springframework.context.ApplicationEvent;

import java.util.List;

/**
 * @Author: szwei
 * @Date: 2020-12-06 23:03
 **/
@Getter
public class GoodsAddEvent extends ApplicationEvent {

    private List<Long> ids;

    public GoodsAddEvent(Object source, List<Long> ids) {
        super(source);
        this.ids = ids;
    }
}

删除商品事件

package cn.couldme.core.event;

import lombok.Getter;
import org.springframework.context.ApplicationEvent;

import java.util.List;

/**
 * @Author: szwei
 * @Date: 2020-12-06 23:03
 **/
@Getter
public class GoodsDelEvent extends ApplicationEvent {

    private List<Long> ids;

    public GoodsDelEvent(Object source, List<Long> ids) {
        super(source);
        this.ids = ids;
    }
}

7. 监听器

package cn.couldme.es.eventListener;

import cn.couldme.core.event.GoodsAddEvent;
import cn.couldme.core.event.GoodsDelEvent;
import cn.couldme.es.service.EsGoodstService;
import lombok.AllArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.context.event.EventListener;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Component;

import java.util.List;

/**
 * @Author: szwei
 * @Date: 2020-12-06 23:22
 **/
@Slf4j
@Component
@AllArgsConstructor
public class GoodsListener {

    private final EsGoodstService esGoodstService;

    @EventListener
    @Async
    public void goodsAddEvent(GoodsAddEvent goodsAddEvent){
        List<Long> ids = goodsAddEvent.getIds();
        log.debug("往es添加商品: ids => {}",ids);
        esGoodstService.batchCreate(ids);
    }

    @EventListener
    @Async
    public void goodsDelEvent(GoodsDelEvent goodsDelEvent){
        List<Long> ids = goodsDelEvent.getIds();
        log.debug("往es删除商品: ids => {}",ids);
        esGoodstService.batchDelete(ids);
    }
}

8. 配置异步

在启动类添加 @EnableAsync注解

9. 效果图

image-20201211153156005

五、注意事项

1. 启动项目报错

img

问题出现原因:

elasticsearch和Redis都需要Netty作为NIO框架,在Redis初始化时已经对Netty进行了初始化处理器数量,当ES再次尝试初始化Netty处理器数量时,Netty就会对此进行保护措施,抛出异常

解决方案:

在启动类上添加:

System.setProperty("es.set.netty.runtime.available.processors", "false");

不让es 的 netty 再次去设置

2. 查询出来的数据没有按照匹配度排序

在导入数据到 es 的时候需要指定 该字段的使用的分词器

例如:

关键词(不会进行分词)@Field(type=FieldType.Keyword)

最大粒度分词@Field(analyzer = "ik_max_word",type = FieldType.Text)