当先锋百科网

首页 1 2 3 4 5 6 7



从NN到RNN再到LSTM

深度学习(十一)RNN入门学习

RNN以及LSTM的介绍和公式梳理

深度学习之三:RNN

A guide to recurrent neural networks and backpropagation

LSTM简介以及数学推导(FULL BPTT)

语言模型,RNN,LSTM与GRU

循环神经网络(RNN, Recurrent Neural Networks)介绍

Recurrent Neural Network Based Language Model(RNNLM)原理及BPTT数学推导

理解LSTM网络

『RNN 监督序列标注』笔记-第三章 神经网络

『RNN 监督序列标注』笔记-第四章 LSTM(Long Short-Term Memory)

深度学习计算模型中“门函数(Gating Function)”的作用

awesome-rnn

RNN训练过程详解

干货 | 图解LSTM神经网络架构及其11种变体(附论文)

深度学习(三十九)LSTM、GRU网络入门学习-未完待续

回馈式(RNN)神经网络中梯度更新的2个经典算法的证明和剖析

深度学习笔记(五)用Torch实现RNN来制作一个神经网络计时器

使用Torch nngraph实现LSTM

LSTM与GRU的一些比较--论文笔记

【青年学者专栏】递归神经网络(Recurrent Neural Network)学习

LSTM实现详解

CRF和LSTM 模型在序列标注上的优劣



<span style="font-family:SimSun;font-size:14px;">"""
This is a batched LSTM forward and backward pass
"""
import numpy as np
import code

class LSTM:
  
  @staticmethod
  def init(input_size, hidden_size, fancy_forget_bias_init = 3):
    """ 
    Initialize parameters of the LSTM (both weights and biases in one matrix) 
    One might way to have a positive fancy_forget_bias_init number (e.g. maybe even up to 5, in some papers)
    """
    # +1 for the biases, which will be the first row of WLSTM
    WLSTM = np.random.randn(input_size + hidden_size + 1, 4 * hidden_size) / np.sqrt(input_size + hidden_size)
    WLSTM[0,:] = 0 # initialize biases to zero
    if fancy_forget_bias_init != 0:
      # forget gates get little bit negative bias initially to encourage them to be turned off
      # remember that due to Xavier initialization above, the raw output activations from gates before
      # nonlinearity are zero mean and on order of standard deviation ~1
      WLSTM[0,hidden_size:2*hidden_size] = fancy_forget_bias_init
    return WLSTM
  
  @staticmethod
  def forward(X, WLSTM, c0 = None, h0 = None):
    """
    X should be of shape (n,b,input_size), where n = length of sequence, b = batch size
    """
    n,b,input_size = X.shape
    d = WLSTM.shape[1]/4 # hidden size
    if c0 is None: c0 = np.zeros((b,d))
    if h0 is None: h0 = np.zeros((b,d))
    
    # Perform the LSTM forward pass with X as the input
    xphpb = WLSTM.shape[0] # x plus h plus bias, lol
    Hin = np.zeros((n, b, xphpb)) # input [1, xt, ht-1] to each tick of the LSTM
    Hout = np.zeros((n, b, d)) # hidden representation of the LSTM (gated cell content)
    IFOG = np.zeros((n, b, d * 4)) # input, forget, output, gate (IFOG)
    IFOGf = np.zeros((n, b, d * 4)) # after nonlinearity
    C = np.zeros((n, b, d)) # cell content
    Ct = np.zeros((n, b, d)) # tanh of cell content
    for t in xrange(n):
      # concat [x,h] as input to the LSTM
      prevh = Hout[t-1] if t > 0 else h0
      Hin[t,:,0] = 1 # bias
      Hin[t,:,1:input_size+1] = X[t]
      Hin[t,:,input_size+1:] = prevh
      # compute all gate activations. dots: (most work is this line)
      IFOG[t] = Hin[t].dot(WLSTM)
      # non-linearities
      IFOGf[t,:,:3*d] = 1.0/(1.0+np.exp(-IFOG[t,:,:3*d])) # sigmoids; these are the gates
      IFOGf[t,:,3*d:] = np.tanh(IFOG[t,:,3*d:]) # tanh
      # compute the cell activation
      prevc = C[t-1] if t > 0 else c0
      C[t] = IFOGf[t,:,:d] * IFOGf[t,:,3*d:] + IFOGf[t,:,d:2*d] * prevc
      Ct[t] = np.tanh(C[t])
      Hout[t] = IFOGf[t,:,2*d:3*d] * Ct[t]

    cache = {}
    cache['WLSTM'] = WLSTM
    cache['Hout'] = Hout
    cache['IFOGf'] = IFOGf
    cache['IFOG'] = IFOG
    cache['C'] = C
    cache['Ct'] = Ct
    cache['Hin'] = Hin
    cache['c0'] = c0
    cache['h0'] = h0

    # return C[t], as well so we can continue LSTM with prev state init if needed
    return Hout, C[t], Hout[t], cache
  
  @staticmethod
  def backward(dHout_in, cache, dcn = None, dhn = None): 

    WLSTM = cache['WLSTM']
    Hout = cache['Hout']
    IFOGf = cache['IFOGf']
    IFOG = cache['IFOG']
    C = cache['C']
    Ct = cache['Ct']
    Hin = cache['Hin']
    c0 = cache['c0']
    h0 = cache['h0']
    n,b,d = Hout.shape
    input_size = WLSTM.shape[0] - d - 1 # -1 due to bias
 
    # backprop the LSTM
    dIFOG = np.zeros(IFOG.shape)
    dIFOGf = np.zeros(IFOGf.shape)
    dWLSTM = np.zeros(WLSTM.shape)
    dHin = np.zeros(Hin.shape)
    dC = np.zeros(C.shape)
    dX = np.zeros((n,b,input_size))
    dh0 = np.zeros((b, d))
    dc0 = np.zeros((b, d))
    dHout = dHout_in.copy() # make a copy so we don't have any funny side effects
    if dcn is not None: dC[n-1] += dcn.copy() # carry over gradients from later
    if dhn is not None: dHout[n-1] += dhn.copy()
    for t in reversed(xrange(n)):
 
      tanhCt = Ct[t]
      dIFOGf[t,:,2*d:3*d] = tanhCt * dHout[t]
      # backprop tanh non-linearity first then continue backprop
      dC[t] += (1-tanhCt**2) * (IFOGf[t,:,2*d:3*d] * dHout[t])
 
      if t > 0:
        dIFOGf[t,:,d:2*d] = C[t-1] * dC[t]
        dC[t-1] += IFOGf[t,:,d:2*d] * dC[t]
      else:
        dIFOGf[t,:,d:2*d] = c0 * dC[t]
        dc0 = IFOGf[t,:,d:2*d] * dC[t]
      dIFOGf[t,:,:d] = IFOGf[t,:,3*d:] * dC[t]
      dIFOGf[t,:,3*d:] = IFOGf[t,:,:d] * dC[t]
      
      # backprop activation functions
      dIFOG[t,:,3*d:] = (1 - IFOGf[t,:,3*d:] ** 2) * dIFOGf[t,:,3*d:]
      y = IFOGf[t,:,:3*d]
      dIFOG[t,:,:3*d] = (y*(1.0-y)) * dIFOGf[t,:,:3*d]
 
      # backprop matrix multiply
      dWLSTM += np.dot(Hin[t].transpose(), dIFOG[t])
      dHin[t] = dIFOG[t].dot(WLSTM.transpose())
 
      # backprop the identity transforms into Hin
      dX[t] = dHin[t,:,1:input_size+1]
      if t > 0:
        dHout[t-1,:] += dHin[t,:,input_size+1:]
      else:
        dh0 += dHin[t,:,input_size+1:]
 
    return dX, dWLSTM, dc0, dh0



# -------------------
# TEST CASES
# -------------------



def checkSequentialMatchesBatch():
  """ check LSTM I/O forward/backward interactions """

  n,b,d = (5, 3, 4) # sequence length, batch size, hidden size
  input_size = 10
  WLSTM = LSTM.init(input_size, d) # input size, hidden size
  X = np.random.randn(n,b,input_size)
  h0 = np.random.randn(b,d)
  c0 = np.random.randn(b,d)

  # sequential forward
  cprev = c0
  hprev = h0
  caches = [{} for t in xrange(n)]
  Hcat = np.zeros((n,b,d))
  for t in xrange(n):
    xt = X[t:t+1]
    _, cprev, hprev, cache = LSTM.forward(xt, WLSTM, cprev, hprev)
    caches[t] = cache
    Hcat[t] = hprev

  # sanity check: perform batch forward to check that we get the same thing
  H, _, _, batch_cache = LSTM.forward(X, WLSTM, c0, h0)
  assert np.allclose(H, Hcat), 'Sequential and Batch forward don''t match!'

  # eval loss
  wrand = np.random.randn(*Hcat.shape)
  loss = np.sum(Hcat * wrand)
  dH = wrand

  # get the batched version gradients
  BdX, BdWLSTM, Bdc0, Bdh0 = LSTM.backward(dH, batch_cache)

  # now perform sequential backward
  dX = np.zeros_like(X)
  dWLSTM = np.zeros_like(WLSTM)
  dc0 = np.zeros_like(c0)
  dh0 = np.zeros_like(h0)
  dcnext = None
  dhnext = None
  for t in reversed(xrange(n)):
    dht = dH[t].reshape(1, b, d)
    dx, dWLSTMt, dcprev, dhprev = LSTM.backward(dht, caches[t], dcnext, dhnext)
    dhnext = dhprev
    dcnext = dcprev

    dWLSTM += dWLSTMt # accumulate LSTM gradient
    dX[t] = dx[0]
    if t == 0:
      dc0 = dcprev
      dh0 = dhprev

  # and make sure the gradients match
  print 'Making sure batched version agrees with sequential version: (should all be True)'
  print np.allclose(BdX, dX)
  print np.allclose(BdWLSTM, dWLSTM)
  print np.allclose(Bdc0, dc0)
  print np.allclose(Bdh0, dh0)
  

def checkBatchGradient():
  """ check that the batch gradient is correct """

  # lets gradient check this beast
  n,b,d = (5, 3, 4) # sequence length, batch size, hidden size
  input_size = 10
  WLSTM = LSTM.init(input_size, d) # input size, hidden size
  X = np.random.randn(n,b,input_size)
  h0 = np.random.randn(b,d)
  c0 = np.random.randn(b,d)

  # batch forward backward
  H, Ct, Ht, cache = LSTM.forward(X, WLSTM, c0, h0)
  wrand = np.random.randn(*H.shape)
  loss = np.sum(H * wrand) # weighted sum is a nice hash to use I think
  dH = wrand
  dX, dWLSTM, dc0, dh0 = LSTM.backward(dH, cache)

  def fwd():
    h,_,_,_ = LSTM.forward(X, WLSTM, c0, h0)
    return np.sum(h * wrand)

  # now gradient check all
  delta = 1e-5
  rel_error_thr_warning = 1e-2
  rel_error_thr_error = 1
  tocheck = [X, WLSTM, c0, h0]
  grads_analytic = [dX, dWLSTM, dc0, dh0]
  names = ['X', 'WLSTM', 'c0', 'h0']
  for j in xrange(len(tocheck)):
    mat = tocheck[j]
    dmat = grads_analytic[j]
    name = names[j]
    # gradcheck
    for i in xrange(mat.size):
      old_val = mat.flat[i]
      mat.flat[i] = old_val + delta
      loss0 = fwd()
      mat.flat[i] = old_val - delta
      loss1 = fwd()
      mat.flat[i] = old_val

      grad_analytic = dmat.flat[i]
      grad_numerical = (loss0 - loss1) / (2 * delta)

      if grad_numerical == 0 and grad_analytic == 0:
        rel_error = 0 # both are zero, OK.
        status = 'OK'
      elif abs(grad_numerical) < 1e-7 and abs(grad_analytic) < 1e-7:
        rel_error = 0 # not enough precision to check this
        status = 'VAL SMALL WARNING'
      else:
        rel_error = abs(grad_analytic - grad_numerical) / abs(grad_numerical + grad_analytic)
        status = 'OK'
        if rel_error > rel_error_thr_warning: status = 'WARNING'
        if rel_error > rel_error_thr_error: status = '!!!!! NOTOK'

      # print stats
      print '%s checking param %s index %s (val = %+8f), analytic = %+8f, numerical = %+8f, relative error = %+8f' \
            % (status, name, `np.unravel_index(i, mat.shape)`, old_val, grad_analytic, grad_numerical, rel_error)


if __name__ == "__main__":

  checkSequentialMatchesBatch()
  raw_input('check OK, press key to continue to gradient check')
  checkBatchGradient()
  print 'every line should start with OK. Have a nice day!'</span></span>