当先锋百科网

首页 1 2 3 4 5 6 7

# coding: utf-8

# In[2]:


import urllib.request
import os
import tarfile
import pickle as p
import numpy as np
import tensorflow as tf


# ## 1、下载数据集

# In[3]:


filepath = 'data/cifar-10-python.tar.gz'
if not os.path.exists("data/cifar-10-batches-py"):
    tfile = tarfile.open("data/cifar-10-python.tar.gz" , 'r:gz')
    result=tfile.extractall("data/")
    print("Extracted to ./data/cifar-10-batches-py/")
else:
    print("Directory already exists.")  


# # 2、导入CIFAR数据集

# In[4]:


def load_CIFAR_batch(filename):
    """ load single batch of cifar """
    with open(filename, 'rb')as f:
    #—个样本由标签和图像数据组成
    # <i x label> <3072 x pixel>(3072=32x32x3)
    #..
    # <1 x label> <3072 x pixel>
        data_dict = p.load(f,encoding='bytes')
        images= data_dict[b'data']
        labels = data_dict[b'labels']
        #把原始数据结构调整为:BCWH
        images = images.reshape(10000,3,32,32)
        # tensorflow处理图像数据的结构:BWHC
        #把通道数据C移动到最后一个维度
        images = images.transpose (0,2,3,1)
        labels = np.array(labels)
        return images, labels


# In[5]:


def load_CIFAR_data(data_dir):
    """load CIFAR data"""
    images_train=[]
    labels_train=[]
    for i in range(5):
        f=os.path.join(data_dir,'data_batch_%d'% (i+1))
        print('loading ',f)
        #调用load_CIFAR_batch( )获得批量的图像及其对应的标签
        image_batch,label_batch=load_CIFAR_batch(f)
        images_train.append(image_batch)
        labels_train.append(label_batch)
        Xtrain=np.concatenate(images_train)
        Ytrain=np.concatenate(labels_train)
        del image_batch ,label_batch
    Xtest, Ytest=load_CIFAR_batch(os.path.join(data_dir, 'test_batch'))
    print('finished loadding CIFAR-10 data')
    #返回训练集的图像和标签,测试集的图像和标签
    return Xtrain,Ytrain,Xtest,Ytest
data_dir = 'data/cifar-10-batches-py/'
Xtrain,Ytrain,Xtest,Ytest = load_CIFAR_data(data_dir)
              
        


# # 3、显示数据集信息

# In[6]:


print('training data shape:',Xtrain.shape)
print('training labels shape:',Ytrain.shape)
print('test data shape:',Xtest.shape)
print('test labels shape:',Ytest.shape)


# # 查看单项image和label

# In[7]:


get_ipython().magic('matplotlib inline')
import matplotlib.pyplot as plt

#查看image
plt.imshow(Xtrain[110])


# In[8]:


# 查看label
# 对应类别信息可查看:http://www.cs.toronto.edu/-kriz/cifar.html/
print(Ytrain[6])


# In[9]:


import matplotlib.pyplot as plt
#定义标签字典,每一个数字所代表的图俊类别的名称
label_dict = {0:"airplane",1:"automobile",2:"bird",3:"cat",4:"deer",5:"dog",6:"frog",7:"horse",8:"ship",9:"truck"}
#定义显示图俊数据及其对应标签的函数
def plot_images_labels_prediction(images,labels,prediction,idx,num=10):
    fig = plt.gcf()
    fig.set_size_inches(12,6)
    if num>10:
        num=10
    for i in range(0,num):
        ax=plt.subplot(2,5,1+i)
        ax.imshow(images[idx],cmap='binary')
        title=str(i)+","+label_dict[labels[idx]]
        if len(prediction)>0:
            title+='=>'+label_dict[prediction[idx]]
        ax.set_title(title,fontsize=10)
        idx+=1
    plt.show()
#显示图俊数据及其对应标签
plot_images_labels_prediction(Xtest, Ytest,[],1,10)


# # 4、数据预处理

# In[10]:


#查看图像数据信息
Xtrain[0][0][0]


# In[24]:


# 将图像进行数据标准化
Xtrain_normalize = Xtrain.astype("float32")/255.0
Xtest_normalize = Xtest.astype("float32")/255.0

Xtrain_normalize[0][0][0]


# # 标签数据预处理----独热编码

# In[12]:


from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(sparse=False)
yy = [[0],[1],[2],[3],[4],[5],[6],[7],[8],[9]]
encoder.fit(yy)
Ytrain_reshape = Ytrain.reshape(-1,1)
Ytrain_onehot = encoder.transform(Ytrain_reshape)
Ytest_reshape = Ytest.reshape(-1,1)
Ytest_onehot = encoder.transform(Ytest_reshape)

#查看标签数据
Ytrain[:10]

Ytrain_onehot.shape

Ytrain[:5]

Ytrain_onehot[:5]


# # 4、定义共享函数

# In[13]:


#定义权值
def weight(shape):
    #在构建模型时,需要使用tf.Variable来创建一个变量
    #在训练时,这个变量不断更新
    #使用函数tf.truncated_normal(截断的正态分布)生成标准差为0.1的随机数来初始化权值
    return tf.Variable(tf.truncated_normal(shape,stddev=0.1),name="W")
#定义偏置
#初始化为0.1
def bias(shape):
    return tf.Variable(tf.constant(0.1,shape=shape),name='b')
#定义卷积操作
#步长为1,padding为‘SAME’
def conv2d(x,W):
    #tf.nn.conv2d(input,filter,strides,padding,use_cudnn_on_gpu=None,name=None)
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
#定义池化操作
#步长为2,即原尺寸的长和宽除以2
def max_pool_2x2(x):
# tf.nn.max_pool(value, ksize, strides, padding, name=None)
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')


# # 5、定义网络结构

# In[14]:


#输入层
#32x32图像,通道为3( RGB)
with tf.name_scope('input_layer'):
    x = tf.placeholder('float',shape=[None,32,32,3],name="x")
#第1个卷积层
#输入通道∶3,输出通道:32,卷积后图像尺寸不变,依然是32x32
with tf.name_scope('conv_1'):
    W1 = weight([3,3,3,32])#[k_width, k_height, input_chn, output_chn]
    b1 = bias([32])#与output_chn—致
    conv_1=conv2d(x,W1)+ b1
    conv_1 = tf.nn.relu(conv_1)
#第1个池化层
#将32x32图像缩小为16x16,池化不改变通道数量,因此依然是32个
with tf.name_scope('pool_1'):
    pool_1 = max_pool_2x2(conv_1)
#第2个卷积层
#输入通道∶32,输出通道∶64,卷积后图像尺寸不变,依然是16x16
with tf.name_scope('conv_2'):
    W2= weight([3,3,32,64])
    b2 = bias([64])
    conv_2=conv2d(pool_1,W2)+ b2
    conv_2 = tf.nn.relu(conv_2)


# In[15]:


#第2个池化层
#将16x16图像缩小为8x8,池化不改变通道数量,因此依然是64个
with tf.name_scope('pool_2'):
    pool_2 = max_pool_2x2(conv_2)
#全连接层
#将池第2个池化层的64个8x8的图像转换为一维的向量,长度是64*8*8=4096#128个神经元
with tf.name_scope('fc'):
    W3= weight([4096,128])#有128个神经元
    b3= bias([128])
    flat = tf.reshape(pool_2,[-1,4096])
    h = tf.nn.relu(tf.matmul(flat,W3)+ b3)
    h_dropout= tf.nn.dropout(h,keep_prob=0.8)
#输出层
#输出层共有10个神经元,对应到0-9这10个类别
with tf.name_scope('output_layer'):
    W4 = weight([128,10])
    b4 = bias([10])
    pred= tf.nn.softmax(tf.matmul(h_dropout, W4)+b4)


# # 6、构建模型

# In[16]:


with tf.name_scope("optimizer"):
    #定义占位符
    y = tf.placeholder("float", shape=[None, 10],name="label")
#定义损失函数
    loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred ,labels=y))
    #选择优化器
    optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss_function)


# # 7、定义准确率

# In[17]:


with tf.name_scope("evaluation"):
    correct_prediction = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))


# # 8、启动会话

# In[18]:


import os
from time import time
train_epochs =25
batch_size = 50
total_batch = int(len(Xtrain)/batch_size)
epoch_list=[];accuracy_list=[];loss_list=[];
epoch = tf.Variable(0,name='epoch',trainable=False)
startTime=time()
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)


# # 9、断点续训

# In[19]:


#设置检查点存储目录
ckpt_dir = "CIFAR10_log/"
if not os.path.exists(ckpt_dir):
    os.makedirs(ckpt_dir)
#生成saver
saver = tf.train.Saver(max_to_keep=1)
#如果有检查点文件,读取最新的检查点文件,恢复各种变量值
ckpt = tf.train.latest_checkpoint(ckpt_dir )
if ckpt != None:
    saver.restore(sess, ckpt)#力载所有的参数
#从这里开始就可以直接使用模型进行预测,或者接着继续训练了
else:
    print("Training from scratch.")
#获取续训参数
start = sess.run(epoch)
print("Training starts form {} epoch.".format(start+1))


# # 10、迭代训练

# In[20]:


def get_train_batch(number, batch_size):
    return Xtrain_normalize[number*batch_size:(number+1)*batch_size],                     Ytrain_onehot[number*batch_size:(number+1)*batch_size]

for ep in range(start, train_epochs):
    for i in range(total_batch):
        batch_x, batch_y = get_train_batch(i,batch_size)
        sess.run(optimizer,feed_dict={x: batch_x, y: batch_y})
        if i %100 == 0:
            print("Step {}".format(i), "finished")
    loss,acc = sess.run([loss_function,accuracy],feed_dict={x: batch_x, y: batch_y})
    epoch_list.append(ep+1)
    loss_list.append(loss)
    accuracy_list.append(acc)
    print("Train epoch:" ,"%02d"%(sess.run(epoch)+1),"Loss=","{:.6f}".format(loss)," Accuracy=",acc)#保存检查点
    saver.save(sess,ckpt_dir+"CIFAR10_cnn_model.cpkt",global_step=ep+1)
    sess.run(epoch.assign(ep+1))
duration =time()-startTime
print("Train finished takes:" ,duration)


# # 10、可视化损失值

# In[21]:


get_ipython().magic('matplotlib inline')
import matplotlib.pyplot as plt
flg = plt.gcf()
flg.set_size_inches(4,2)
plt.plot(epoch_list,loss_list,label = "loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend("loss",loc = "upper right")


# ## 可视化准确率

# In[22]:


plt.plot(epoch_list,accuracy_list,label = "accuracy")
fig = plt.gcf()
fig.set_size_inches(4,2)
plt.ylim(0.1,1)
plt.ylabel("accuracy")
plt.xlabel("epoch")
plt.legend()
plt.show()


# # 11、评估模型及预测

# ## 计算测试集上的准确率

# In[25]:


test_total_batch = int(len(Xtest_normalize)/batch_size)
test_acc_sum = 0.0
for i in range(test_total_batch):
    test_image_batch = Xtest_normalize[i*batch_size:(i+1)*batch_size]
    test_label_batch = Ytest_onehot[i*batch_size:(i+1)*batch_size]
    test_batch_acc = sess.run(accuracy,feed_dict = {x:test_image_batch,y:test_label_batch})
    test_acc_sum += test_batch_acc
test_acc = float(test_acc_sum/test_total_batch)
print("Test accuracy:{:.6f}".format(test_acc))


# ## 利用模型进行预测

# In[26]:


test_pred = sess.run(pred,feed_dict = {x:Xtest_normalize[:10]})
prediction_result = sess.run(tf.argmax(test_pred,1))


# In[ ]: