当先锋百科网

首页 1 2 3 4 5 6 7

Hadoop学习笔记之在Eclipse中远程调试Hadoop

插件

话说Hadoop 1.0.2/src/contrib/eclipse-plugin只有插件的源代码,这里给出一个我打包好的对应的Eclipse插件:
下载地址

下载后扔到eclipse/dropins目录下即可,当然eclipse/plugins也是可以的,前者更为轻便,推荐;重启Eclipse,即可在透视图(Perspective)中看到Map/Reduce。

配置

点击蓝色的小象图标,新建一个Hadoop连接:

2

注意,一定要填写正确,修改了某些端口,以及默认运行的用户名等

具体的设置,可见

正常情况下,可以在项目区域可以看到

image

这样可以正常的进行HDFS分布式文件系统的管理:上传,删除等操作。

为下面测试做准备,需要先建了一个目录 user/root/input2,然后上传两个txt文件到此目录:

intput1.txt 对应内容:Hello Hadoop Goodbye Hadoop

intput2.txt 对应内容:Hello World Bye World

HDFS的准备工作好了,下面可以开始测试了。

Hadoop工程

新建一个Map/Reduce Project工程,设定好本地的hadoop目录

1

新建一个测试类WordCountTest:

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
          
package com . hadoop . learn . test ;
 
import java.io.IOException ;
import java.util.StringTokenizer ;
 
import org.apache.hadoop.conf.Configuration ;
import org.apache.hadoop.fs.Path ;
import org.apache.hadoop.io.IntWritable ;
import org.apache.hadoop.io.Text ;
import org.apache.hadoop.mapreduce.Job ;
import org.apache.hadoop.mapreduce.Mapper ;
import org.apache.hadoop.mapreduce.Reducer ;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat ;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat ;
import org.apache.hadoop.util.GenericOptionsParser ;
import org.apache.log4j.Logger ;
 
/**
* 运行测试程序
*
* @author yongboy
* @date 2012-04-16
*/
public class WordCountTest {
private static final Logger log = Logger . getLogger ( WordCountTest . class );
 
public static class TokenizerMapper extends
Mapper < Object , Text , Text , IntWritable > {
private final static IntWritable one = new IntWritable ( 1 );
private Text word = new Text ();
 
public void map ( Object key , Text value , Context context )
throws IOException , InterruptedException {
log . info ( "Map key : " + key );
log . info ( "Map value : " + value );
StringTokenizer itr = new StringTokenizer ( value . toString ());
while ( itr . hasMoreTokens ()) {
String wordStr = itr . nextToken ();
word . set ( wordStr );
log . info ( "Map word : " + wordStr );
context . write ( word , one );
}
}
}
 
public static class IntSumReducer extends
Reducer < Text , IntWritable , Text , IntWritable > {
private IntWritable result = new IntWritable ();
 
public void reduce ( Text key , Iterable < IntWritable > values ,
Context context ) throws IOException , InterruptedException {
log . info ( "Reduce key : " + key );
log . info ( "Reduce value : " + values );
int sum = 0 ;
for ( IntWritable val : values ) {
sum += val . get ();
}
result . set ( sum );
log . info ( "Reduce sum : " + sum );
context . write ( key , result );
}
}
 
public static void main ( String [] args ) throws Exception {
Configuration conf = new Configuration ();
String [] otherArgs = new GenericOptionsParser ( conf , args )
. getRemainingArgs ();
if ( otherArgs . length != 2 ) {
System . err . println ( "Usage: WordCountTest <in> <out>" );
System . exit ( 2 );
}
 
Job job = new Job ( conf , "word count" );
job . setJarByClass ( WordCountTest . class );
 
job . setMapperClass ( TokenizerMapper . class );
job . setCombinerClass ( IntSumReducer . class );
job . setReducerClass ( IntSumReducer . class );
job . setOutputKeyClass ( Text . class );
job . setOutputValueClass ( IntWritable . class );
 
FileInputFormat . addInputPath ( job , new Path ( otherArgs [ 0 ]));
FileOutputFormat . setOutputPath ( job , new Path ( otherArgs [ 1 ]));
 
System . exit ( job . waitForCompletion ( true ) ? 0 : 1 );
}
}
view raw WordCountTest.java hosted with ❤ by  GitHub

右键,选择“Run Configurations”,弹出窗口,点击“Arguments”选项卡,在“Program argumetns”处预先输入参数:

hdfs://master:9000/user/root/input2 dfs://master:9000/user/root/output2

备注:参数为了在本地调试使用,而非真实环境。

然后,点击“Apply”,然后“Close”。现在可以右键,选择“Run on Hadoop”,运行。

但此时会出现类似异常信息:

12/04/24 15:32:44 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
12/04/24 15:32:44 ERROR security.UserGroupInformation: PriviledgedActionException as:Administrator cause:java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Administrator\mapred\staging\Administrator-519341271\.staging to 0700
Exception in thread "main" java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Administrator\mapred\staging\Administrator-519341271\.staging to 0700
    at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:682)
    at org.apache.hadoop.fs.FileUtil.setPermission(FileUtil.java:655)
    at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:509)
    at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:344)
    at org.apache.hadoop.fs.FilterFileSystem.mkdirs(FilterFileSystem.java:189)
    at org.apache.hadoop.mapreduce.JobSubmissionFiles.getStagingDir(JobSubmissionFiles.java:116)
    at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:856)
    at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:850)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:396)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1093)
    at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:850)
    at org.apache.hadoop.mapreduce.Job.submit(Job.java:500)
    at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:530)
    at com.hadoop.learn.test.WordCountTest.main(WordCountTest.java:85)

这个是Windows下文件权限问题,在Linux下可以正常运行,不存在这样的问题。

解决方法是,修改/hadoop-1.0.2/src/core/org/apache/hadoop/fs/FileUtil.java里面的checkReturnValue,注释掉即可(有些粗暴,在Window下,可以不用检查):

12345678910111213
          
......
private static void checkReturnValue ( boolean rv , File p ,
FsPermission permission
) throws IOException {
/**
if (!rv) {
throw new IOException("Failed to set permissions of path: " + p +
" to " +
String.format("%04o", permission.toShort()));
}
**/
}
......
view raw FileUtil.java hosted with ❤ by  GitHub

重新编译打包hadoop-core-1.0.2.jar,替换掉hadoop-1.0.2根目录下的hadoop-core-1.0.2.jar即可。

这里提供一份修改版的hadoop-core-1.0.2-modified.jar文件,替换原hadoop-core-1.0.2.jar即可。

替换之后,刷新项目,设置好正确的jar包依赖,现在再运行WordCountTest,即可。

成功之后,在Eclipse下刷新HDFS目录,可以看到生成了ouput2目录:

image

点击“ part-r-00000”文件,可以看到排序结果:

Bye    1
Goodbye    1
Hadoop    2
Hello    2
World    2

嗯,一样可以正常Debug调试该程序,设置断点(右键 –> Debug As – > Java Application),即可(每次运行之前,都需要收到删除输出目录)。

另外,该插件会在eclipse对应的workspace\.metadata\.plugins\org.apache.hadoop.eclipse下,自动生成jar文件,以及其他文件,包括Haoop的一些具体配置等。

嗯,更多细节,慢慢体验吧。

遇到的异常

org.apache.hadoop.ipc.RemoteException: org.apache.hadoop.hdfs.server.namenode.SafeModeException: Cannot create directory /user/root/output2/_temporary. Name node is in safe mode.
The ratio of reported blocks 0.5000 has not reached the threshold 0.9990. Safe mode will be turned off automatically.
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirsInternal(FSNamesystem.java:2055)
    at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:2029)
    at org.apache.hadoop.hdfs.server.namenode.NameNode.mkdirs(NameNode.java:817)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
    at java.lang.reflect.Method.invoke(Method.java:597)
    at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:563)
    at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1388)
    at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1384)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:396)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1093)
    at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1382)

在主节点处,关闭掉安全模式:

#bin/hadoop dfsadmin –safemode leave

如何打包

将创建的Map/Reduce项目打包成jar包,很简单的事情,无需多言。保证jar文件的META-INF/MANIFEST.MF文件中存在Main-Class映射:

Main-Class: com.hadoop.learn.test.TestDriver

若使用到第三方jar包,那么在MANIFEST.MF中增加Class-Path好了。

另外可使用插件提供的MapReduce Driver向导,可以帮忙我们在Hadoop中运行,直接指定别名,尤其是包含多个Map/Reduce作业时,很有用。

一个MapReduce Driver只要包含一个main函数,指定别名:

12345678910111213141516171819202122232425262728
          
package com . hadoop . learn . test ;
 
import org.apache.hadoop.util.ProgramDriver ;
 
/**
*
* @author yongboy
* @time 2012-4-24
* @version 1.0
*/
public class TestDriver {
 
public static void main ( String [] args ) {
int exitCode = - 1 ;
ProgramDriver pgd = new ProgramDriver ();
try {
pgd . addClass ( "testcount" , WordCountTest . class ,
"A test map/reduce program that counts the words in the input files." );
pgd . driver ( args );
 
exitCode = 0 ;
} catch ( Throwable e ) {
e . printStackTrace ();
}
 
System . exit ( exitCode );
}
}
view raw TestDriver.java hosted with ❤ by  GitHub

这里有一个小技巧,MapReduce Driver类上面,右键运行,Run on Hadoop,会在Eclipse的workspace\.metadata\.plugins\org.apache.hadoop.eclipse目录下自动生成jar包,上传到HDFS,或者远程hadoop根目录下,运行它:

# bin/hadoop jar LearnHadoop_TestDriver.java-460881982912511899.jar testcount input2 output3

OK,本文结束。


源地址http://www.blogjava.net/yongboy/archive/2012/04/26/376486.html