当先锋百科网

首页 1 2 3 4 5 6 7

1、神经网络自整定PID真的有效吗?我看图书馆的参考书上和知网论文上的方法,感觉推导过程都不对啊?

楼主的这个问题已经是六年前的问题了(今天2021年5月),不知道楼主现在还关注这个话题不?神经网络自整定PID肯定是有效的。目前,神经网络自整定PID主要面临三个问题:一是初值选择的问题,不合理的初值很容易使闭环系统不稳定;二是神经网络自整定PID自身需要人为设定的参数较多,PID控制自身只需要三个人为设定参数,神经网络自整定PID则需要四个(三个初值和一个学习因子),这使得神经网络自整定PID比传统PID算法还要麻烦;三是缺乏完整的理论稳定性证明,神经网络自整定PID在线更新规则早已稳定,并且被广泛引用和应用,而基于神经网络自整定PID的闭环系统稳定性证明一直没有得到很好的解决,某种程度上,这限制了神经网络自整定PID的推广。
我个人也做了一些这样的研究,感兴趣的话可以参考我的一篇期刊论文。
Data-Driven Tracking Control Based on LM and PID Neural Network with Relay Feedback for Discrete Nonlinear Systems

谷歌人工智能写作项目:小发猫

2、什么叫单神经元自适应pid控制

神经元,也可以角感知器,结构和人的神经元细胞差不多,树突是信号采集的,每个树突都有自己的权重值,轴突是输出值,一般

用于逼近线性系统,PID纯粹就是控制器,这个楼主应该知道的神经网络自适应pid控制。当神经元很多并且形成形成层了就是我吗所说的神经网络了

3、PID神经网络控制 10

是的,要进行归一化处理,输出也必须进行反归一化处理。
补充回答:
用原来的最大和最小值。

4、什么是PID调节器,并举例说明P、I、D的调节作用。

PID 调节器是一个在工业控制应用中常见的反馈回路部件,PID是以它的三种纠正算法而命名的。这三种算法都是用加法调整被控制的数值。而实际上这些加法运算大部分变成了减法运算因为被加数总是负值。以下是PID的调节作用举例:

1.比例- 来控制当前,误差值和一个负常数P(表示比例)相乘,然后和预定的值相加。P只是在控制器的输出和系统的误差成比例的时候成立。这种控制器输出的变化与输入控制器的偏差成比例关系。比如说,一个电热器的控制器的比例尺范围是10°C,它的预定值是20°C。那么它在10°C的时候会输出100%,在15°C的时候会输出50%,在19°C的时候输出10%,注意在误差是0的时候,控制器的输出也是0。

2.积分 - 来控制过去,误差值是过去一段时间的误差和,然后乘以一个负常数I,然后和预定值相加。I从过去的平均误差值来找到系统的输出结果和预定值的平均误差。一个简单的比例系统会振荡,会在预定值的附近来回变化,因为系统无法消除多余的纠正。通过加上一个负的平均误差比例值,平均的系统误差值就会总是减少。所以,最终这个PID回路系统会在预定值定下来。

3.微分 - 来控制将来,计算误差的一阶导,并和一个负常数D相乘,最后和预定值相加。这个导数的控制会对系统的改变作出反应。导数的结果越大,那么控制系统就对输出结果作出更快速的反应。这个D参数也是PID被称为可预测的控制器的原因。D参数对减少控制器短期的改变很有帮助。一些实际中的速度缓慢的系统可以不需要D参数。

扩展资料:

用更专业的话来讲,一个PID控制器可以被称作一个在频域系统的滤波器。这一点在计算它是否会最终达到稳定结果时很有用。如果数值挑选不当,控制系统的输入值会反复振荡,这导致系统可能永远无法达到预设值。

5、什么是PID调节器,并举例说明P、I、D的调节作用。

工业生产过程中,对于生产装置的温度、压力、流量、液位等工艺变量常常要求维持在一定的数值上,或按一定的规律变化,以满足生产工艺的要求。PID控制器是根据PID控制原理对整个控制系统进行偏差调节,从而使被控变量的实际值与工艺要求的预定值一致。不同的控制规律适用于不同的生产过程,必须合理选择相应的控制规律,否则PID控制器将达不到预期的控制效果。
PID控制器(Proportion Integration Differentiation.比例-积分-微分控制器),由比例单元 P、积分单元 I 和微分单元 D 组成。通过Kp, Ki和Kd三个参数的设定。PID控制器主要适用于基本线性和动态特性不随时间变化的系统。
PID 控制器是一个在工业控制应用中常见的反馈回路部件。这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,一个PID反馈回路却可以保持系统的稳定。
一个控制回路包括三个部分:
系统的传感器得到的测量结果 控制器作出决定 通过一个输出设备来作出反应 控制器从传感器得到测量结果,然后用需求结果减去测量结果来得到误差。然后用误差来计算出一个对系统的纠正值来作为输入结果,这样系统就可以从它的输出结果中消除误差。
在一个PID回路中,这个纠正值有三种算法,消除目前的误差,平均过去的误差,和透过误差的改变来预测将来的误差。
比如说,假如一个水箱在为一个植物提供水,这个水箱的水需要保持在一定的高度。一个传感器就会用来检查水箱里水的高度,这样就得到了测量结果。控制器会有一个固定的用户输入值来表示水箱需要的水面高度,假设这个值是保持65%的水量。控制器的输出设备会连在一个马达控制的水阀门上。打开阀门就会给水箱注水,关上阀门就会让水箱里的水量下降。这个阀门的控制信号就是我们控制的变量,它也是这个系统的输入来保持这个水箱水量的固定。
PID控制器可以用来控制任何可以被测量的并且可以被控制的变量。比如,它可以用来控制温度,压强,流量,化学成分,速度等等。汽车上的巡航定速功能就是一个例子。
一些控制系统把数个PID控制器串联起来,或是链成网络。这样的话,一个主控制器可能会为其他控制输出结果。一个常见的例子是马达的控制。我们会常常需要马达有一个控制的速度并且停在一个确定的位置。这样呢,一个子控制器来管理速度,但是这个子控制器的速度是由控制马达位置的主控制器来管理的。
连合和串联控制在化学过程控制系统中是很常见的。
PID是以它的三种纠正算法而命名的。这三种算法都是用加法调整被控制的数值。而实际上这些加法运算大部分变成了减法运算因为被加数总是负值。这三种算法是:
比例- 来控制当前,误差值和一个负常数P(表示比例)相乘,然后和预定的值相加。P只是在控制器的输出和系统的误差成比例的时候成立。这种控制器输出的变化与输入控制器的偏差成比例关系。比如说,一个电热器的控制器的比例尺范围是10°C,它的预定值是20°C。那么它在10°C的时候会输出100%,在15°C的时候会输出50%,在19°C的时候输出10%,注意在误差是0的时候,控制器的输出也是0。
积分 - 来控制过去,误差值是过去一段时间的误差和,然后乘以一个负常数I,然后和预定值相加。I从过去的平均误差值来找到系统的输出结果和预定值的平均误差。一个简单的比例系统会振荡,会在预定值的附近来回变化,因为系统无法消除多余的纠正。通过加上一个负的平均误差比例值,平均的系统误差值就会总是减少。所以,最终这个PID回路系统会在预定值定下来。
微分 - 来控制将来,计算误差的一阶导,并和一个负常数D相乘,最后和预定值相加。这个导数的控制会对系统的改变作出反应。导数的结果越大,那么控制系统就对输出结果作出更快速的反应。这个D参数也是PID被称为可预测的控制器的原因。D参数对减少控制器短期的改变很有帮助。一些实际中的速度缓慢的系统可以不需要D参数。 用更专业的话来讲,一个PID控制器可以被称作一个在频域系统的滤波器。这一点在计算它是否会最终达到稳定结果时很有用。如果数值挑选不当,控制系统的输入值会反复振荡,这导致系统可能永远无法达到预设值。
尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。这几种控制规律可以单独使用,但是更多场合是组合使用。如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。
比例(P)控制
单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太大,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太小,控制作用太强,容易导致系统的稳定性变差,引发振荡。
对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。
单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。
比例积分(PI)控制
比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。克服余差的办法是在比例控制的基础上加上积分控制作用。
积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。积分控制规律又称无差控制规律。
积分时间的大小表征了积分控制作用的强弱。积分时间越小,控制作用越强;反之,控制作用越弱。
积分控制虽然能消除余差,但它存在着控制不及时的缺点。因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。这样取二者之长,互相弥补,既有比例控制作用的迅速及时,又有积分控制作用消除余差的能力。因此,比例积分控制可以实现较为理想的过程控制。
比例积分控制器是目前应用最为广泛的一种控制器,多用于工业生产中液位、压力、流量等控制系统。由于引入积分作用能消除余差,弥补了纯比例控制的缺陷,获得较好的控制质量。但是积分作用的引入,会使系统稳定性变差。对于有较大惯性滞后的控制系统,要尽量避免使用。
比例微分(PD)控制
比例积分控制对于时间滞后的被控对象使用不够理想。所谓“时间滞后”指的是:当被控对象受到扰动作用后,被控变量没有立即发生变化,而是有一个时间上的延迟,比如容量滞后,此时比例积分控制显得迟钝、不及时。为此,人们设想:能否根据偏差的变化趋势来做出相应的控制动作呢?犹如有经验的操作人员,即可根据偏差的大小来改变阀门的开度(比例作用),又可根据偏差变化的速度大小来预计将要出现的情况,提前进行过量控制,“防患于未然”。这就是具有“超前”控制作用的微分控制规律。微分控制器输出的大小取决于输入偏差变化的速度。
微分输出只与偏差的变化速度有关,而与偏差的大小以及偏差是否存在与否无关。如果偏差为一固定值,不管多大,只要不变化,则输出的变化一定为零,控制器没有任何控制作用。微分时间越大,微分输出维持的时间就越长,因此微分作用越强;反之则越弱。当微分时间为0时,就没有微分控制作用了。同理,微分时间的选取,也是需要根据实际情况来确定的。
微分控制作用的特点是:动作迅速,具有超前调节功能,可有效改善被控对象有较大时间滞后的控制品质;但是它不能消除余差,尤其是对于恒定偏差输入时,根本就没有控制作用。因此,不能单独使用微分控制规律。
比例和微分作用结合,比单纯的比例作用更快。尤其是对容量滞后大的对象,可以减小动偏差的幅度,节省控制时间,显著改善控制质量。
PID控制
最为理想的控制当属比例-积分-微分控制规律。它集三者之长:既有比例作用的及时迅速,又有积分作用的消除余差能力,还有微分作用的超前控制功能。
当偏差阶跃出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使偏差幅度减小,由于比例作用是持久和起主要作用的控制规律,因此可使系统比较稳定;而积分作用慢慢把余差克服掉。只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。
调试方法编辑
比例系数的调节
比例系数P的调节范围一般是:0.1--100.
如果增益值取 0.1,PID 调节器输出变化为十分之一的偏差值。如果增益值取 100, PID 调节器输出变化为一百倍的偏差值。
可见该值越大,比例产生的增益作用越大。初调时,选小一些,然后慢慢调大,直到系统波动足够小,再调节积分或微分系数。过大的P值会导致系统不稳定,持续振荡;过小的P值又会使系统反应迟钝。合适的值应该使系统有足够的灵敏度但又不会反应过于灵敏,一定时间的迟缓要靠积分时间来调节。
积分系数的调节
积分时间常数的定义是,偏差引起输出增长的时间。积分时间设为 1秒,则输出变化 100%所需时间为 1 秒。初调时要把积分时间设置长些,然后慢慢调小直到系统稳定为止。
微分系数的调节
微分值是偏差值的变化率。例如,如果输入偏差值线性变化,则在调节器输出侧叠加一个恒定的调节量。大部分控制系统不需要调节微分时间。因为只有时间滞后的系统才需要附加这个参数。如果画蛇添足加上这个参数反而会使系统的控制受到影响。如果通过比例、积分参数的调节还是收不到理想的控制要求,就可以调节微分时间。初调时把这个系数设小,然后慢慢调大,直到系统稳定。
参数整定编辑
PID控制器的参数整定是控制系统设计的核心内容。它是根据被 控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是 依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主 要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应 曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需 要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡, 记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 [1]
在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。
对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3
对于流量系统:P(%)40--100,I(分)0.1--1
对于压力系统:P(%)30--70,I(分)0.4--3
对于液位系统:P(%)20--80,I(分)1--5
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低
适应控制编辑
首先弄清楚什么是自适应控制
在生产过程中为了提高产品质量,增加产量,节约原材料,要求生产管理及生产过程始终处于最优工作状态。因此产生了一种最优控制的方法,这就叫自适应控制。在这种控制中要求系统能够根据被测参数,环境及原材料的成本的变化而自动对系统进行调节,使系统随时处于最佳状态。自适应控制包括性能估计(辨别)、决策和修改三个环节。它是微机控制系统的发展方向。但由于控制规律难以掌握,所以推广起来尚有一些难以解决的问题。
加入自适应的pid控制就带有了一些智能特点,像生物一样能适应外界条件的变化。
还有自学习系统,就更加智能化了。
参数整定编辑
PID控制器参数整定与实现》- 图书信息
书 名: PID控制器参数整定与实现
作 者:黄友锐,曲立国
出版社: 中国科学出版社
出版时间:2010-1-1
开本: 16开
定价: 39.00元
《PID控制器参数整定与实现》- 内容简介
本书是作者多年来在基于自然计算的PID控制器参数整定与实现方面进行深入研究的基础上撰写而成的。在吸收国内外许多具有代表性的最新研究成果的基础上,本书着重介绍作者在这一领域的研究成果,主要包括:PID控制器参数整定方法;分数阶PID控制器的参数整定;基于QDRNN的多变量PID控制器参数整定;数字PID控制器的FPGA实现;基于BP神经网络的PID控制器的FPGA实现;基于遗传算法的PID控制器的FPGA实现;基于粒子群算法的PID控制器的FPGA实现;主要算法的基本程序。
本书可作为与自动化相关专业的师生、研究人员以及工程技术人员的参考书。
《PID控制器参数整定与实现》- 图书目录
前言
第1章 绪论
第2章 PID控制器参数整定方法
第3章 分数阶PID控制器的参数整定
第4章 基于QDRNN的多变量PID控制器参数整定
第5章 数字PID控制器的FPGA实现
第6章 基于BP神经网络的PID控制器的FPGA实现
第7章 基于遗传算法的PID控制器的FPGA实现
第8章 基于粒子群算法的PID控制器的FPGA实现
附录
参考文献
比例积微分控制器的专利、软件及硬件编辑
这在IEEE《控制系统》杂志上有综述,包括最优控制器参数设定,可由格拉斯哥大学CAutoD网站免费下载改善PID微分和积分的方法及:
Patents, software, and hardware for PID control: An overview and analysis of the current art, IEEE Control Systems, 2006。[2]