当先锋百科网

首页 1 2 3 4 5 6 7

如何训练神经网络

1、先别着急写代码训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。

Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。

由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。

一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。

2、设置端到端的训练评估框架处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。

获得准确度等衡量模型的标准,用模型进行预测。这个阶段的技巧有:·固定随机种子使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。·简单化在此阶段不要有任何幻想,不要扩增数据。

扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。

·在评估中添加有效数字在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。·在初始阶段验证损失函数验证函数是否从正确的损失值开始。

例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。·初始化正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。

如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。·人类基线监控除人为可解释和可检查的损失之外的指标。

尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。

·设置一个独立于输入的基线最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。·过拟合一个batch增加了模型的容量并验证我们可以达到的最低损失。

·验证减少训练损失尝试稍微增加数据容量。

谷歌人工智能写作项目:神经网络伪原创

您好 您会使用MATLAB人工神经网络的可视化工具吗 关于BP的训练~希望能得到您的帮助 感谢

用python编写的神经网络结果怎么可视化

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了AndrewTrask写得一篇精彩的博客,我做到了!

下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。

matlab神经网络工具箱具体怎么用

为了看懂师兄的文章中使用的方法,研究了一下神经网络昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,百度知道里倒是有一个,可以运行的,先贴着做标本%生成训练样本集clearall;clc;P=[1100.8072400.21511821.5;1102.8652400.11521212;1102.592400.11242411.5;2200.62400.31231821;22032400.32532111.5;1101.5622400.31531811.5;1100.5472400.3151921.5];01.3183000.11521812];T=[54248162787168380314797;28614639586963782898;86002402710644415328084;230802445102362823335913;602571278927675373541;346159353280762110049;56783172907164548144040];@907117437120368130179];m=max(max(P));n=max(max(T));P=P'/m;T=T'/n;%-------------------------------------------------------------------------%pr(1:9,1)=0;%输入矢量的取值范围矩阵pr(1:9,2)=1;bpnet=newff(pr,[124],{'logsig','logsig'},'traingdx','learngdm');%建立BP神经网络,12个隐层神经元,4个输出神经元%tranferFcn属性'logsig'隐层采用Sigmoid传输函数%tranferFcn属性'logsig'输出层采用Sigmoid传输函数%trainFcn属性'traingdx'自适应调整学习速率附加动量因子梯度下降反向传播算法训练函数%learn属性'learngdm'附加动量因子的梯度下降学习函数net.trainParam.epochs=1000;%允许最大训练步数2000步=0.001;%训练目标最小误差0.001=10;%每间隔100步显示一次训练结果=0.05;%学习速率0.05bpnet=train(bpnet,P,T);%-------------------------------------------------------------------------p=[1101.3183000.11521812];p=p'/m;r=sim(bpnet,p);R=r'*n;display(R);运行的结果是出现这样的界面点击performance,trainingstate,以及regression分别出现下面的界面再搜索,发现可以通过神经网络工具箱来创建神经网络,比较友好的GUI界面,在输入命令里面输入nntool,就可以开始了。

点击import之后就出现下面的具体的设置神经网络参数的对话界面,这是输入输出数据的对话窗首先是训练数据的输入然后点击new,创建一个新的神经网络network1,并设置其输入输出数据,包括名称,神经网络的类型以及隐含层的层数和节点数,还有隐含层及输出层的训练函数等点击view,可以看到这是神经网络的可视化直观表达创建好了一个network之后,点击open,可以看到一个神经网络训练,优化等的对话框,选择了输入输出数据后,点击train,神经网络开始训练,如右下方的图,可以显示动态结果下面三个图形则是点击performance,trainingstate以及regression而出现的下面就是simulate,输入的数据是用来检验这个网络的数据,output改一个名字,这样就把输出数据和误差都存放起来了在主界面上点击export就能将得到的out结果输入到matlab中并查看下图就是输出的两个outputs结果还在继续挖掘,tobecontinue……

神经网络预测程序 20

我一直用这个程序,觉得还可以,你试试吧,不过需要你自己根据数据来设置相应的参数~~closeall;clear;echoon;clc;%NEWFF——生成一个新的前向神经网络%TRAIN——对BP神经网络进行训练%SIM——对BP神经网络进行仿真pause%敲任意键开始clc%定义训练样本%P为输入矢量p=[];%T为目标矢量t=[];%训练样本的归一化fori=1:(训练样本的指标数)P(i,:)=(p(i,:)-min(p(i,:)))/(max(p(i,:))-min(p(i,:)));endpauseclc%创建一个新的前向神经网络net=newff(minmax(P),[15,2],{'tansig','purelin'},'traingda');%这些参数要自己设置%当前输入层权值和阈值{1,1};inputbias=net.b{1};%当前网络层权值和阈值{2,1};layerbias=net.b{2};pauseclc%设置训练参数也要自己设置=50;=0.05;=0.9;%附加动量因子net.trainParam.epochs=5000;=1e-4;pauseclc%调用TRAINGDM算法训练BP网络[net,tr]=train(net,P,t);pauseclc%对BP网络进行仿真p_test=[];fori=1:6P_test(i,:)=(p_test(i,:)-min(p_test(i,:)))/(max(p_test(i,:))-min(p_test(i,:)));endt_test=[];A=sim(net,P_test)%计算仿真误差E=t-Aerror=mse(E)pauseclcechooff%反归一化fori=1:2predict(i,:)=A(i,:)*(max(t(i,:))-min(t(i,:)))+min(t(i,:));endpredict%即仿真结果pause。

什么是BP神经网络?

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。

经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。

3、计算网络实际输出与期望输出的误差。4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。

5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。