当先锋百科网

首页 1 2 3 4 5 6 7

Spark官网对内存管理的介绍如下地址:
http://spark.apache.org/docs/latest/tuning.html#determining-memory-consumption
查看源码,内存管理的逻辑在MemoryManager.scala
SparkEnv.scala

    val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyMode", false)
    val memoryManager: MemoryManager =
      if (useLegacyMemoryManager) {
        new StaticMemoryManager(conf, numUsableCores)
      } else {
        UnifiedMemoryManager(conf, numUsableCores)
      }

    val blockManagerPort = if (isDriver) {
      conf.get(DRIVER_BLOCK_MANAGER_PORT)
    } else {
      conf.get(BLOCK_MANAGER_PORT)
    }

1.5及其以前的内存管理模式为如下,得到的内存大小为:(systemMaxMemory * memoryFraction * safetyFraction).toLong,如果内存设置为1G,那么真正的获得的执行内存为:1024M*0.2*0.8 = 163M,真正的获得的存储内存为:1024M*06*0.9 = 552.96
统一的内存管理,存储和内存是独立分开的

  def this(conf: SparkConf, numCores: Int) {
    this(
      conf,
      StaticMemoryManager.getMaxExecutionMemory(conf),
      StaticMemoryManager.getMaxStorageMemory(conf),
      numCores)
  }

  private def getMaxExecutionMemory(conf: SparkConf): Long = {
    // 默认如果未配置spark.testing.memory,则使用运行时的最大内存
    val systemMaxMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
    // 如果系统最大内存 < 32M,则抛出错误
    if (systemMaxMemory < MIN_MEMORY_BYTES) {
      throw new IllegalArgumentException(s"System memory $systemMaxMemory must " +
        s"be at least $MIN_MEMORY_BYTES. Please increase heap size using the --driver-memory " +
        s"option or spark.driver.memory in Spark configuration.")
    }
    // 如果传入的参数 --executor-memory 不为空,且executorMemory  不小于32m, 则executorMemory有效
    if (conf.contains("spark.executor.memory")) {
      val executorMemory = conf.getSizeAsBytes("spark.executor.memory")
      if (executorMemory < MIN_MEMORY_BYTES) {
        throw new IllegalArgumentException(s"Executor memory $executorMemory must be at least " +
          s"$MIN_MEMORY_BYTES. Please increase executor memory using the " +
          s"--executor-memory option or spark.executor.memory in Spark configuration.")
      }
    }
    val memoryFraction = conf.getDouble("spark.shuffle.memoryFraction", 0.2)
    val safetyFraction = conf.getDouble("spark.shuffle.safetyFraction", 0.8)
    (systemMaxMemory * memoryFraction * safetyFraction).toLong
  }
  // 存储内存
  private def getMaxStorageMemory(conf: SparkConf): Long = {
    val systemMaxMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
    val memoryFraction = conf.getDouble("spark.storage.memoryFraction", 0.6)
    val safetyFraction = conf.getDouble("spark.storage.safetyFraction", 0.9)
    (systemMaxMemory * memoryFraction * safetyFraction).toLong
  }
spark.memory.useLegacyModefalseWhether to enable the legacy memory management mode used in Spark 1.5 and before. The legacy mode rigidly partitions the heap space into fixed-size regions, potentially leading to excessive spilling if the application was not tuned. The following deprecated memory fraction configurations are not read unless this is enabled: spark.shuffle.memoryFraction
spark.storage.memoryFraction
spark.storage.unrollFraction

统一的内存管理:存储和内存是公用的,预留的内存要300M

 // Set aside a fixed amount of memory for non-storage, non-execution purposes.
  // This serves a function similar to `spark.memory.fraction`, but guarantees that we reserve
  // sufficient memory for the system even for small heaps. E.g. if we have a 1GB JVM, then
  // the memory used for execution and storage will be (1024 - 300) * 0.6 = 434MB by default.
  private val RESERVED_SYSTEM_MEMORY_BYTES = 300 * 1024 * 1024

  def apply(conf: SparkConf, numCores: Int): UnifiedMemoryManager = {
    val maxMemory = getMaxMemory(conf)
    new UnifiedMemoryManager(
      conf,
      maxHeapMemory = maxMemory,
      onHeapStorageRegionSize =
        (maxMemory * conf.getDouble("spark.memory.storageFraction", 0.5)).toLong,
      numCores = numCores)
  }

  /**
   * Return the total amount of memory shared between execution and storage, in bytes.
   */
  private def getMaxMemory(conf: SparkConf): Long = {
    val systemMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
    // spark.testing.reservedMemory 未设置,则根据spark.testing判断
    val reservedMemory = conf.getLong("spark.testing.reservedMemory",
      // 如果未设置,则为300M
      if (conf.contains("spark.testing")) 0 else RESERVED_SYSTEM_MEMORY_BYTES)
    val minSystemMemory = (reservedMemory * 1.5).ceil.toLong
    // 如果上面得到的系统内存小于预留的内存的1.5倍,则会抛出错误
    if (systemMemory < minSystemMemory) {
      throw new IllegalArgumentException(s"System memory $systemMemory must " +
        s"be at least $minSystemMemory. Please increase heap size using the --driver-memory " +
        s"option or spark.driver.memory in Spark configuration.")
    }
    // SPARK-12759 Check executor memory to fail fast if memory is insufficient
    if (conf.contains("spark.executor.memory")) {
      val executorMemory = conf.getSizeAsBytes("spark.executor.memory")
      if (executorMemory < minSystemMemory) {
        throw new IllegalArgumentException(s"Executor memory $executorMemory must be at least " +
          s"$minSystemMemory. Please increase executor memory using the " +
          s"--executor-memory option or spark.executor.memory in Spark configuration.")
      }
    }
    val usableMemory = systemMemory - reservedMemory
    val memoryFraction = conf.getDouble("spark.memory.fraction", 0.6)
    (usableMemory * memoryFraction).toLong
  }
系统内存如果没有设置,那么就是
val maxMemory = getMaxMemory(conf){
val systemMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
val reservedMemory = 300 M
}
可用的内存 = 系统内存-预留内存,可供执行和存储使用的是 可用的内存*60%,假如配置1G内存,那么执行端和存储端大约各占200-300M
val usableMemory = systemMemory - reservedMemory
val memoryFraction = conf.getDouble("spark.memory.fraction", 0.6)
(usableMemory * memoryFraction).toLong

官网后面还有一些补充:When no execution memory is used, storage can acquire all the available memory and vice versa. Execution may evict storage if necessary, but only until total storage memory usage falls under a certain threshold (R). In other words, R describes a subregion within M where cached blocks are never evicted. Storage may not evict execution due to complexities in implementation.
也就是执行端的内存若不够的话,会向存储端借内存,如果存储端的借给执行端后,假如存储端不够了(超过某个阈值),会从执行端取回来