当先锋百科网

首页 1 2 3 4 5 6 7

RNN是一类拥有隐藏状态,允许以前的输出可用于当前输入的神经网络,

 输入一个序列,对于序列中的每个元素与前一个元素的隐藏状态一起作为RNN的输入,通过计算当前的输出和隐藏状态。当前的影藏状态作为下一个单元的输入...

 

 RNN的种类

上图中的红色方块代表输入,蓝色方块代表输出,绿色方块代表

一对一(one to one)

一对一的结构一般指经典的卷积神经网络和全连接神经网络,被誉为香草神经网络,它们处理固定大小的输入,并输出固定大小的输出,主要用于图像分类任务。

下面介绍循环神经网络RNN的几种结构和其应用:

多对一(many to one)

多对一结构用于分类,如情感分类(输入一个句子,判断是积极还是消极的情感)

 一对多(one to many)

一对多可用于生成,如音乐生成,还可以用于图像字幕(输入一张图片,输出一个文本句子)

多对多(many to many)

多对多结构可用于机器翻译(输入一个英文句子,输出一个中文句子)和视频分类(视频中的多个帧作为输入,对视频中的每一帧进行分类)

RNN多对一用于图像分类

下面介绍使用RNN进行分类(图像分类)的方法。RNN用于分类任务的结构是多对一结构。假设图像的尺寸是28x28的黑白图片,将每一个张图片作为RNN的输入,每一行作为一个输入特征,所有的行构成一个序列。

RNN的输出只选择最后一行的输出(使用out[:, -1, :]),这就是多对一的精髓。最后再套一个全连接层,使用交叉熵作为判断准则。

RNN图像分类的示例代码

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader

import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters 
# input_size = 784  # 28x28
hidden_size = 128
num_classes = 10
num_epochs = 2
batch_size = 100
learning_rate = 0.001

input_size = 28
sequence_length = 28
num_layers = 2

# MNIST dataset 
train_dataset = torchvision.datasets.MNIST(root='./data', 
                                           train=True, 
                                           transform=transforms.ToTensor(),  
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='./data', 
                                          train=False, 
                                          transform=transforms.ToTensor())

# Data loader
train_loader = DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False)

examples = iter(test_loader)
example_data, example_targets = next(examples)

# for i in range(6):
#     plt.subplot(2,3,i+1)
#     plt.imshow(example_data[i][0], cmap='gray')
# plt.show()

# Fully connected neural network with one hidden layer
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(RNN, self).__init__()
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
        #  x: (batch_size, sequence_len, input_size)
        self.fc = nn.Linear(hidden_size, num_classes)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)

        out, _ = self.rnn(x, h0)
        # out: batch_size, seq_length, hidden_size
        # out: (N, 28, 128)
        out = out[:, -1, :]
        # out (N, 128)
        out = self.fc(out)
        return out

model = RNN(input_size, hidden_size, num_layers,num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)  

# Train the model
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):  
        # origin shape: [100, 1, 28, 28]
        # resized: [100, 28, 28]
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}')

# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
    n_correct = 0
    n_samples = 0
    for images, labels in test_loader:
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        outputs = model(images)
        # max returns (value ,index)
        _, predicted = torch.max(outputs.data, 1)
        n_samples += labels.size(0)
        n_correct += (predicted == labels).sum().item()

    acc = 100.0 * n_correct / n_samples
    print(f'Accuracy of the network on the 10000 test images: {acc} %')