当先锋百科网

首页 1 2 3 4 5 6 7
package java.util;

import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.Map.Entry;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181265L;

    //HashMap默认初始化容量  16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    //HashMap的最大容量,若通过构造函数指定了更大的值,则使用该值
    static final int MAXIMUM_CAPACITY = 1 << 30;

    //HashMap默认的填充因子,当元素个数达到容量的0.75时触发rehash操作,对HashMap进行扩容
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     *  jdk 1.8之前的HashMap形象如下:
     *     key1		  key2       key3       key4       key5       key6
     *  hashcode1  hashcode2  hashcode3  hashcode4  hashcode5  hashcode6
     *      ↓          ↓          ↓                     ↓
     *     key7       key8       key9                  key10
     *      ↓                     ↓
     *     key11                 key12
     *      ↓
     *     key13
     *  横向是一个table,用于存放不同hashcode的K-V对
     *  纵向是一个bucket(桶),用于存放相同hashcode的K-V对,实际上是一个链表
     */
    //HashMap的数据结构由单链表转换为树的阀值,当单链表中节点数大于该值时会由链表转换为红黑树
    static final int TREEIFY_THRESHOLD = 8;

    //HashMap的数据结构由红黑树转换为单链表的阀值,当"桶中的"节点数小于该值时会由红黑树转换为链表
    static final int UNTREEIFY_THRESHOLD = 6;

    //HashMap中由链表转换为红黑树对应table的最小值,即只有当table元素数量达到该值时"桶"数据结构才有可能发生转换
    static final int MIN_TREEIFY_CAPACITY = 64;

    //HashMap的节点类,实现了Map的Entry接口,是一个单链表,是HashMap链式存储法对应的链表,用于处理Hash冲突
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;//节点对象对应的hash值
        final K key;//保存key对象
        V value;//保存value对象
        Node<K,V> next;//指向下一个具有相同HashCode的节点的指针

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        /*
         *HashMap节点的比较,key与value值相同时才相等
         */
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    /* ---------------- Static utilities -------------- */

    
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /**
     * 若参数x是Comparable的实现类,则返回参数x的Class类型,否则返回null
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                        ((p = (ParameterizedType)t).getRawType() ==
                         Comparable.class) &&
                        (as = p.getActualTypeArguments()) != null &&
                        as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    /**
     * 仅当k与x的Class类型相同时,两者进行比较并返回比较结果,否则返回0
     */
    @SuppressWarnings({"rawtypes","unchecked"}) 
    static int compareComparables(Class<?> kc, Object k, Object x) {
    	//
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

    //返回大于cap的最小的二次幂数值
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- Fields -------------- */

    //HashMap中存储元素的数组,长度总是为2的幂次倍
    transient Node<K,V>[] table;

    //存放具体元素的集合
    transient Set<Map.Entry<K,V>> entrySet;

    //HashMap中存放的元素个数,该值不等于table的长度
    transient int size;

    //记录HashMap数据结构改变的次数,用于迭代器触发快速失败策略
    transient int modCount;

    //记录HashMap下一次扩容阀值,超过该值则进行扩容threshold = capacity * load factor
    int threshold;

    
    //HashMap的填充因子,默认为0.75
    final float loadFactor;

    /* ---------------- Public operations -------------- */

    //以指定的初始容量与填充因子构造一个HashMap
    public HashMap(int initialCapacity, float loadFactor) {
    	//初始容量不可小于0,否则抛IllegalArgumentException
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
        //若初始容量大于最大容量,则默认为最大容量                                      
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        //填充因子需>0且不可为非数字,否则抛IllegalArgumentException
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    //以指定的初始容量构造一个HashMap
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /*
     * 以默认属性构造一个HashMap
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
    }

    //以指定Map中的元素构造一个HashMap
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        //将m中的所有元素添加到HashMap中
        putMapEntries(m, false);
    }

    //将m中的所有元素添加到HashMap中,当构造HashMap时候调用,evict为false,其余时候为true
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
        	//若HashMap的table未初始化(即构造时候调用该方法),则根据m的元素个数,计算要创建的HashMap的容量
            if (table == null) {
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            //若HashMap已初始化(即非构造时候调用该方法),m的元素个数大于HashMap的扩容阀值,则对HashMap进行扩容
            else if (s > threshold)
                resize();//该方法十分耗时,需尽量避免HashMap发生扩容
            //遍历m的所有元素,放入HashMap中
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

    //返回HashMap的元素个数
    public int size() {
        return size;
    }

    //判断HashMap的是否为空
    public boolean isEmpty() {
        return size == 0;
    }

    //返回指定key映射的value对象,若不存在则返回null
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    //根据key获取HashMap中对应的节点对象
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
        	/*根据hash值计算在table中对应的下标位置并取得第一个节点,若第一个节点的key
        	 * 与指定key相同,则直接返回第一个节点
        	 */
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //若第一个节点不匹配,且存在后续节点
            if ((e = first.next) != null) {
            	//若该节点是红黑树类型
                if (first instanceof TreeNode)
                	//则按照红黑树方式取到指定节点并返回
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //若是单链表类型节点,则遍历单链表,找到key与指定key相等的便返回
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        //若table,即HashMap中无元素,则返回null
        return null;
    }

    /*
     *判断HashMap中是否指定key
     */
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

    /**
     * 将k-v对放入HashMap中,若HashMap中已存在相同key,则老的value会被覆盖
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     *将k-v对放入HashMap中,当onlyIfAbsent = true时,key相同时不覆盖已存在的值(putIfAbsent方法,key存在时不覆盖),
     *evict只有在HashMap创建时候为false,表示进入创建模式,其余时候为true
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //当table为null或者table中无元素时,调用resize方法初始化table
        if ((tab = table) == null || (n = tab.length) == 0)
        	//此时n保存的是新table的容量值
            n = (tab = resize()).length;
        //计算当前k-v对在table中的下标位置,并判断当前
        //下标位置是否已经被其他k-v对占用,若没被占用则
        //直接new节点放入该位置
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
        	//若当前下标位置已被其他k-v对占用,则分3种情况来处理
            Node<K,V> e; K k;
            //若老的k-v对的hash值与当前k-v对的hash值相等,且key也是相等的,直接覆盖value
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
            	//则用e保存老的k-v对
                e = p;
            //若老的k-v对是红黑树节点,则按红黑树节点进行添加
            else if (p instanceof TreeNode)
            	//用e保存老的红黑树节点
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
            	//若不属于上面2种情况,即当前位置存放的是一个单链表,遍历单链表
                for (int binCount = 0; ; ++binCount) {
                	//若遍历到单链表最后一个节点,直接new节点放入单链表尾部
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //若该单链表长度大于等于"链表转树的阈值",则将单链表转换为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //跟上面第1种情况一样,在单链表中的节点,若hash值相等且key也相等,直接覆盖value
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
        	//上面只是找到要进行覆盖的k-v节点,这里才对value值进行覆盖
            if (e != null) {
            	//保存老的value值
                V oldValue = e.value;
                //上面说了,只有当onlyIfAbsent为true时,不覆盖老的value,
                //onlyIfAbsent为false时
                if (!onlyIfAbsent || oldValue == null)
                	//覆盖老的value
                    e.value = value;
                afterNodeAccess(e);
                //返回老的value
                return oldValue;
            }
        }
        //结构改变次数递增
        ++modCount;
        //若HashMap中的元素个数大于扩容阈值,则进行扩容
        /*
         * 这里就可能会产生一个内存浪费的问题,当我们put到HashMap中的k-v对的hash值经常出现重复的,
         * 即会出现这么一种情况,table中并没有放足够的元素,而由于hash相同,就会导致单链表or红黑树
         * 过大,而此时table中有可能也就少数个位置有元素,而其他位置是空着的,这是HashMap发生扩容,便
         * 会导致越来越多的table位置是空着的,浪费内存
         * 想象这么一个极端情况:不断往HashMap中put进去key不同而hash值相同的k-v对,这时所有的k-v对
         * 都会在table的同一个位置上,形成单链表or红黑树,而table的其他位置是空着的,HashMap发生扩容
         * 便会翻倍地增加table上的空闲位置
         */
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        //没有覆盖老的value,返回null
        return null;
    }

    /**
     * 对HashMap进行扩容的方法,初始化HashMap或者以 原容量*2 的方式进行扩容,
     * 最后返回扩容后的table
     */
    final Node<K,V>[] resize() {
    	//这里开始依据现有HashMap的容量与扩容阈值来确定新的容量与扩容阈值
        Node<K,V>[] oldTab = table;
        //取得原table中元素的数量与扩容阈值,当这两个值大于0时,表示HashMap已经初始化过,
        //新table容量在原基础上*2即可
        int oldCap = (oldTab == null) ? 0 : oldTab.length;//保存原table大小
        //保存原扩容阈值
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
        	//若原table中元素数量已达到最大值,无法扩容,直接返回
        	//这种情况会造成单链表的长度过大,效率下降
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //若扩容后的容量不会大于等于最大值,则新table容量与新扩容阈值在原table的基础上翻倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; 
        }
        //这种情况发生在使用指定初始化容量or填充因子初始化HashMap时,扩容阈值会被初始化
        else if (oldThr > 0) 
        	//将原扩容阈值作为新容量
            newCap = oldThr;
        else {
        	//最后这种情况表示HashMap未被初始化过,使用默认值来进行初始化
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //若新扩容阈值为0(上面流程进入else if代码块)
        if (newThr == 0) {
        	//重新计算新扩容阈值,最大不超过MAXIMUM_CAPACITY
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //更新该HashMap的扩容阈值
        threshold = newThr;
        //这里开始初始化新table,将原tabke中的元素放入扩容后的新table中
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        //更新该HashMap中的table
        table = newTab;
        //将原table中的元素逐一放入新table中
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                //若节点不为null
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;//主动释放原table的空间
                    //若该节点的单链表中只有一个节点,没有后续节点,则直接重新计算在新table中的index,并将此节点存储到新table对应的index位置
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                    	//若节点是红黑树节点,则按红黑树方式进行移动
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { //若该节点的单链表中不止一个节点,则迁移单链表中的每一个节点
                        /*
                         * 在这里将单链表中的k-v对按hash值分成lo与hi两种类型,lo类型的k-v对在新table中的位置与在原table中相同,hi类型
                         * 的k-v对在新table中的位置是在"原table位置+oldCap(下面解释与代码可知)",这么分类主要是将单链表中冲突的节点分
                         * 散到新table中,提高效率,而k-v对属于何种类型则取决于"(e.hash & oldCap) == 0"这一条件,为何如此这一设计呢?
                         * 我们都知道,HashMap的容量皆是2的幂,二进制形式就是100..00这种,而我们知道长度为n的数组,下标最大也就是 n-1,即2的
                         * 幂减1,二进制形式就是1111..111这种,而k-v对在table中的下标位置计算公式是 "e.hash & (capacity - 1)",而二进
                         * 制 &操作 是只有同位上的值皆是1算出来才是1的,如:6 & 3 = 2,二进制&如下
                         *   110
                         *  &011 = 010
                         * 因此,若上面的判定条件为true,则意味着oldCap为1的那位对应的k-v对的hash位的为0(因oldCap除了最高位为1,其余为0),
                         * 对新下标的计算没有影响(懵逼?等下看例子就懂),而从上面代码可知,新table下标位的计算是"e.hash & (newCap - 1)",
                         * 且newCap = oldCap << 2(oldCap * 2),即"新下标 = e.hash & ((oldCap << 2) - 1)",若上面的判定条件为false,
                         * 则oldCap为1的那位对应的k-v对的hash位为1,新下标就相当于多了10..00,就是oldCap(还是很懵逼吧?直接上例子)
                         * 如:oldCap = 16,则newCap = 32,16二进制为10000,32二进制为100000,(oldCap-1)二进制为1111,(newCap-1)二进制
                         * 为11111,判定"(e.hash & oldCap) == 0"的时候如下:
                         *   hash:   xxxx xxxx xxxy xxxx
                         *  &oldCap: 0000 0000 0001 0000 
                         * 若条件为true,则y = 0,若条件为false,则y = 1
                         * 计算old下标时候如下:
                         *   hash:       xxxx xxxx xxxy xxxx
                         * &(oldCap-1):  0000 0000 0000 1111  (ps:old下标计算与y无关,只是为下面做铺垫)
                         * 计算new下标时候如下:
                         *   hash:       xxxx xxxx xxxy xxxx
                         * &(newCap-1):  0000 0000 0001 1111 
                         * 此时,当y=0时,old与new计算出来的下标都是"0xxxx&01111",对新下标没影响;而当y=1时,新下标就是"1xxxx&11111",
                         * 这个时候新下标就相当于多了10..00,因为1xxxx&11111 = 1xxxx&01111 + 10000,用具体数值计算如下:
                         *  y=0时:
                         *  hash:0000 1101
                         * &oCap:0000 1111 = 0000 1101
                         *  hash:0000 1101
                         * &nCap:0001 1111 = 0000 1101
                         *  y=1时:
                         *  hash:0001 1101
                         * &oCap:0000 1111 = 0000 1101
                         *  hash:0001 1101
                         * &nCap:0001 1111 = 0001 1101
                         *  new下标 = old下标 + 10000
                         *       0000 1101
                         *      +0001 0000 = 0001 1101
                         * 这下懂为什么hi类型的k-v对在新table的位置是"原table位置 + oldCap"了吧!
                         * 这个设计贼特么巧妙,省去了重新计算hash值的时间,而且把之前有冲突的k-v对均匀分散到新table中了  
                         * http://www.importnew.com/20386.html
                         * https://www.zhihu.com/question/28365219  参考的
                         */
                    	Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //构造lo类型k-v对新的单链表
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            //构造hi类型k-v对新的单链表
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                        	//lo类型的k-v对在新table的位置与原table相同
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                        	//hi类型的k-v对在新table的位置为"原table位置 + oldCap"
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        //返回新的table
        return newTab;
    }

    /*
     * 将单链表数据结构转换为红黑树
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        //若table为初始化或table容量小于MIN_TREEIFY_CAPACITY
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            //则用resize进行初始化or扩容
        	resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
        	//这里开始将单链表结构转换为红黑树
            TreeNode<K,V> hd = null, tl = null;
            do {
            	//将单链表节点转换为红黑树节点并返回
                TreeNode<K,V> p = replacementTreeNode(e, null);
                //将每一个红黑树节点进行位置的关联
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            //上面的do-while只是将红黑树每个节点的位置进行前后关联(可以理解成是一条以红
            //黑树节点为节点的双向链表),并没有转换为树结构,这里才是转换成树结构
            if ((tab[index] = hd) != null)
                //将链表结构转换为红黑树
            	hd.treeify(tab);
        }
    }

    /**
     * 将指定Map中的k-v对放入当前HashMap中,若当前HashMap中存在key相同的,则老的value会被覆盖
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

    /**
     * 移除HashMap中指定key的节点
     */
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    /**
     * value是按值移除节点时候用到
     * matchValue为true时,只有value相等时候才移除,为false时,按key移除
     * movable为false时,移除节点过程中不移动其他节点,为true时则移动其他节点
     * 
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        //若table不为null,且table元素个数大于0与key对应下标位置存在节点时,才进行remove
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            //这里开始取得要remove的节点并存放到node上,分3种情况
            //1.该下标位置的第一个节点就是要remove的节点,不分是Node节点还是TreeNode节点(hash值相等,key也相等)
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            //该下标位置的第一个节点不是要remove的节点,则判断是红黑树还是单链表结构
            else if ((e = p.next) != null) {
            	//2.若是红黑树,则调用红黑树的方法取得要remove的节点
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                	//3.若是单链表,则遍历单链表取得要remove的节点(hash值相等,key也相等)
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //这里根据参数决定按key移除or按value移除,按value移除当且仅当matchValue = true且value相等时才移除
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
            	//若节点是红黑树节点(第1种情况且是红黑树节点,或是第二种情况),则调用红黑树的方法移除节点
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                //若要remove的节点属于第1种情况且不是红黑树节点,则直接将第2个节点放入table指定位置上(即将第2个节点上移取代原本第1个节点的位置)
                else if (node == p)
                    tab[index] = node.next;
                //若要remove的节点属于第3种情况,即单链表,直接将next指针指向要remove节点的next节点即可
                else
                    p.next = node.next;
                //结构改变次数+1
                ++modCount;
                //HahsMap元素个数-1
                --size;
                afterNodeRemoval(node);
                //返回已移除的节点
                return node;
            }
        }
        return null;
    }

    /**
     * 移除HashMap中所有的k-v对,该方法执行后HashMap将变为empty(空,不是null)
     */
    public void clear() {
        Node<K,V>[] tab;
        //结构改变次数+1
        modCount++;
        //若HashMap中有元素
        if ((tab = table) != null && size > 0) {
        	//HashMap元素个数置为0
            size = 0;
            //遍历table并将各个位置上的元素置为null
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

    /**
     * 判断HashMap中是否有key对应指定的value,有对应则返回true,否则返回false
     */
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
        	//从头开始遍历table上的每一个位置
            for (int i = 0; i < tab.length; ++i) {
            	//遍历table每一个位置上的单链表or红黑树结构
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                	//若value值相等,则返回true
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

    /**
     * 返回一个包含Map中所有key的Set集合,对Map进行的改变也会映射到这个Set中,
     * 当返回的Set在进行迭代的时候,Map发生改变,则迭代的结果是不确定的(除非是调用
     * 迭代器自己的remove操作而发生的改变,该Set支持一系列remove操作,但不支持
     * add操作),KeySet是在第一次调用的时候创建,并响应后续的请求,因为不是同步执行
     * 的,所以在多次调用可能返回的集合不是同一个,KeySet的具体创建在HashMap的父类
     * AbstractMap中
     */
    public Set<K> keySet() {
        Set<K> ks;
        return (ks = keySet) == null ? (keySet = new KeySet()) : ks;
    }
    /**
     * 摘自父类AbstractMap,实际上就是以匿名内部类的方式实现AbstractSet中的抽象
     * 方法,而该Set集合的元素是从EntrySet中取得的(即依赖于EntrySet,至于EntrySet
     * 是怎么实现的,下面会介绍到)
     */
    public Set<K> keySet() {
        if (keySet == null) {
        	//直接new一个AbstractSet
            keySet = new AbstractSet<K>() {
                public Iterator<K> iterator() {
                    return new Iterator<K>() {
                    	//迭代器Iterator取得是EntrySet中的迭代器
                        private Iterator<Entry<K,V>> i = entrySet().iterator();
                        public boolean hasNext() {
                            return i.hasNext();
                        }
                        //next方法取得是EntrySet中的Entry的key
                        public K next() {
                            return i.next().getKey();
                        }
                        public void remove() {
                            i.remove();
                        }
                    };
                }
                //size方法实际上调用的也是EntrySet的size方法
                public int size() {
                    return AbstractMap.this.size();
                }
                //isEmpty方法实际上就是调用EntrySet的size方法,判断返回值是否==0
                public boolean isEmpty() {
                    return AbstractMap.this.isEmpty();
                }
                //clear方法也是调用EntrySet的clear方法
                public void clear() {
                    AbstractMap.this.clear();
                }
                //contains方法实现如下,也是依赖EntrySet实现的
                public boolean contains(Object k) {
                    return AbstractMap.this.containsKey(k);
                }
                
                //也是摘自父类AbstractMap
                public boolean containsKey(Object key) {
                	//取得EntrySet的迭代器
                    Iterator<Map.Entry<K,V>> i = entrySet().iterator();
                    //若key==null,直接迭代,若遇到key==null的返回true
                    if (key==null) {
                        while (i.hasNext()) {
                            Entry<K,V> e = i.next();
                            if (e.getKey()==null)
                                return true;
                        }
                    } else {
                    	//若key!=null,迭代并使用key的equal方法判断是否相等,是则返回true
                        while (i.hasNext()) {
                            Entry<K,V> e = i.next();
                            if (key.equals(e.getKey()))
                                return true;
                        }
                    }
                    return false;
                }
            };
        }
        return keySet;
    }

    //KeySet的实现类,没什么特殊的,其中的Spliterator与forEach在List源码那里有简单介绍
    final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super K> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * 返回一个包含Map中所有value的Collection集合,对Map进行的改变也会映射到这个Collection
     * 中,当返回的Set在进行迭代的时候,Map发生改变,则迭代的结果是不确定的(除非是调用
     * 迭代器自己的remove操作而发生的改变,该Collection支持一系列remove操作,但不支持
     * add操作),与KeySet类似
     */
    public Collection<V> values() {
        Collection<V> vs;
        return (vs = values) == null ? (values = new Values()) : vs;
    }
    
    /*
     * 摘自父类AbstractMap,与KeySet一样,依赖于EntrySet,KeySet取的是EntrySet的key,
     * Values取的是EntrySet的value
     */
    public Collection<V> values() {
        if (values == null) {
            values = new AbstractCollection<V>() {
                public Iterator<V> iterator() {
                    return new Iterator<V>() {
                        private Iterator<Entry<K,V>> i = entrySet().iterator();

                        public boolean hasNext() {
                            return i.hasNext();
                        }

                        public V next() {
                            return i.next().getValue();
                        }

                        public void remove() {
                            i.remove();
                        }
                    };
                }

                public int size() {
                    return AbstractMap.this.size();
                }

                public boolean isEmpty() {
                    return AbstractMap.this.isEmpty();
                }

                public void clear() {
                    AbstractMap.this.clear();
                }

                public boolean contains(Object v) {
                    return AbstractMap.this.containsValue(v);
                }
            };
        }
        return values;
    }

    //跟KeySet类似,不做介绍
    final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<V> iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * 跟之前的KeySet与values一样,返回一个HashMap的k-v的映射,对Map进行的改变也会
     * 映射到这个EntrySet中,当返回的EntrySet在进行迭代的时候,Map发生改变,则迭代的
     * 结果是不确定的(除非是调用迭代器自己的remove操作而发生的改变,该EntrySet支持一
     * 系列remove操作,但不支持add操作)
     */
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

    //在HashMap中实际上就是Node节点的集合
    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        //返回Entry的迭代器,具体怎么实现的,下面会介绍
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        //判断指定对象(需是Entry类型)是否在EntrySet集合里面
        public final boolean contains(Object o) {
        	//不是Entry类型,直接返回false
            if (!(o instanceof Map.Entry))
                return false;
            //强转成Entry类型
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            //取得key
            Object key = e.getKey();
            //根据key到HashMap中取得对应的节点
            Node<K,V> candidate = getNode(hash(key), key);
            //取得到对应节点且key与value相等才算是包含在HasMap中
            return candidate != null && candidate.equals(e);
        }
        //移除指定对象(需是Entry类型)
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
            	//强转成Entry
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                //取得key
                Object key = e.getKey();
                //取得value
                Object value = e.getValue();
                //根据key与value移除对应的Node节点
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    // Overrides of JDK8 Map extension methods

    /*
     * 根据key获取对应的value,若无对应的value,则返回参数中的defaultValue
     */
    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
    }

    /*
     * 若HashMap中不存在,则将k-v对放进去
     */
    @Override
    public V putIfAbsent(K key, V value) {
        return putVal(hash(key), key, value, true, true);
    }

    /*
     * 根据k-v对移除指定HashMap节点,只有key与value完全相等时才移除
     */
    @Override
    public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }

    /*
     * 将指定key的节点的value替换为newValue,只有当节点的value与oldValue相等时才替换
     */
    @Override
    public boolean replace(K key, V oldValue, V newValue) {
        Node<K,V> e; V v;
        //取得对应的节点且value与oldValue相等时才执行替换
        if ((e = getNode(hash(key), key)) != null &&
            ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

    /*
     * 将指定key的节点的value替换为newValue
     */
    @Override
    public V replace(K key, V value) {
        Node<K,V> e;
        //取得对应的节点并替换value
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

    /*
     * 该方法是jdk1.8新增的方法,可以构建本地缓存,降低程序的计算量,程序的复杂度,使代码简洁,易懂
     * 大致流程就是,首先判断缓存MAP中是否存在指定key的值,如果存在,则返回节点的值;如果不存在,会
     * 自动调用mappingFunction(key)计算key对应的value,然后将key-value对放入到缓存Map,
     * java8会使用thread-safe的方式从cache中存取记录
     */
    @Override
    public V computeIfAbsent(K key,
                             Function<? super K, ? extends V> mappingFunction) {
        if (mappingFunction == null)
            throw new NullPointerException();
        //根据key计算Hash值
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        //该变量用于记录key对应的table位置上节点的个数,超过链表转换树的阈值时会将单链表转换为红黑树
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        //若当前HashMap的size超过扩容阈值或者未初始化,则调用resize方法扩容或初始化
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        //根据hash值计算key对应的节点在table中的位置,并取得该位置的第一个节点
        if ((first = tab[i = (n - 1) & hash]) != null) {
        	//若该位置存储的是红黑树节点
            if (first instanceof TreeNode)
            	//则按红黑树的方法取得节点
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
            	//若该位置存储的是单链表
                Node<K,V> e = first; K k;
                do {
                	//则遍历单链表取得对应的节点,仅当hash相等且key相等才是所需节点
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            //若取得到节点且节点的value不为null,则直接返回节点的value
            V oldValue;
            if (old != null && (oldValue = old.value) != null) {
                afterNodeAccess(old);
                return oldValue;
            }
        }
        //若取不到节点,则调用Function对象的apply方法计算出key对应的value值
        V v = mappingFunction.apply(key);
        if (v == null) {
        	//若计算出的value值为null,直接返回null
            return null;
        } else if (old != null) {
        	//这种情况是key原本在HashMap中有对应的节点,但节点的value为
        	//null,则把计算出来的value作为key对应节点的value后返回
            old.value = v;
            afterNodeAccess(old);
            return v;
        }
        else if (t != null)
        	//这种情况是key原本在HashMap中无对应节点,且key对
        	//应的位置是一颗红黑树,则将计算结果放入红黑树中
            t.putTreeVal(this, tab, hash, key, v);
        else {
        	//这种情况是key原本在HashMap中无对应节点,且key对
        	//应的位置是单链表,直接创建单链表节点
            tab[i] = newNode(hash, key, v, first);
            //若binCount超过单链表转换树的阈值(大于8),则将单链表转换为红黑树
            if (binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab, hash);
        }
        //结构修改次数+1
        ++modCount;
        //HashMap元素个数+1
        ++size;
        afterNodeInsertion(true);
        //返回新计算出来的value
        return v;
    }

    /*
     * 若HashMap中存在指定key,则根据key计算出value并替换掉老的value,最后返回计算出来的value
     */
    public V computeIfPresent(K key,
                              BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        Node<K,V> e; V oldValue;
        //计算key的hash值
        int hash = hash(key);
        //根据key与hash值取得节点
        if ((e = getNode(hash, key)) != null &&
            (oldValue = e.value) != null) {
        	//根据key与老的value计算新的value
            V v = remappingFunction.apply(key, oldValue);
            //若计算出来的value不为null
            if (v != null) {
            	//则替换老的value
                e.value = v;
                afterNodeAccess(e);
                //返回计算出来的value
                return v;
            }
            else
            	//若计算出来的value为null,则移除该节点
                removeNode(hash, key, null, false, true);
        }
        return null;
    }

    //根据key与oldValue计算出节点的新value值
    @Override
    public V compute(K key,
                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        //该变量用于记录key对应的table位置上节点的个数,超过链表转换树的阈值时会将单链表转换为红黑树
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        //若当前HashMap元素个数超过扩容阈值或为初始化,则调用resize方法扩容或初始化
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        //根据hash值计算key对应的节点在table中的位置,并取得该位置的第一个节点
        if ((first = tab[i = (n - 1) & hash]) != null) {
        	//若该位置存储的是红黑树节点
            if (first instanceof TreeNode)
            	//则按红黑树的方式取得节点
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
            	//若该位置存储的是单链表
                Node<K,V> e = first; K k;
                do {
                	//则遍历单链表取得对应的节点,仅当hash相等且key相等才是所需节点
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        //取出key对应节点老的value
        V oldValue = (old == null) ? null : old.value;
        //根据key与oldValue计算新的value
        V v = remappingFunction.apply(key, oldValue);
        if (old != null) {
        	//若key对应的节点存在且计算出来的value不为null,则节点的value替换为计算出来的value
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
            	//若key对应的节点存在且计算出来的value为null,则移除该节点
                removeNode(hash, key, null, false, true);
        }
        else if (v != null) {
        	//若key对应的节点不存在且对应位置是一颗红黑树
            if (t != null)
            	//则将key与计算出来的value作为红黑树的节点放进去
                t.putTreeVal(this, tab, hash, key, v);
            else {
            	//若key对应的节点不存在且对应位置是单链表,则将key与计算出来的value作为
            	//单链表的节点放进去
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            //结构改变次数+1
            ++modCount;
            //HashMap元素个数+1
            ++size;
            afterNodeInsertion(true);
        }
        //返回计算出来的value
        return v;
    }

    /*
     * 该方法与上面的类似,只是当计算出来的value为null时多了参数value这一操作,不多做叙述
     */
    @Override
    public V merge(K key, V value,
                   BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        if (value == null)
            throw new NullPointerException();
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        if (old != null) {
            V v;
            if (old.value != null)
                v = remappingFunction.apply(old.value, value);
            else
                v = value;
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
            return v;
        }
        if (value != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, value);
            else {
                tab[i] = newNode(hash, key, value, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return value;
    }

    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
        Node<K,V>[] tab;
        if (action == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next)
                    action.accept(e.key, e.value);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }
    /*
     * 使用function计算出来的value替换当前HashMap中所有key对应的value
     */
    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Node<K,V>[] tab;
        if (function == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            //遍历逐个替换
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    e.value = function.apply(e.key, e.value);
                }
            }
            //在进行replaceAll过程中,别的地方对HashMap进行结构上的操作会导致ConcurrentModificationException
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    /* ------------------------------------------------------------ */
    // Cloning and serialization

    /*
	 *返回当前HashMap的一个浅复制
     */
    @SuppressWarnings("unchecked")
    @Override
    public Object clone() {
        HashMap<K,V> result;
        try {
            result = (HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

    //返回当前HashMap的填充因子
    final float loadFactor() { return loadFactor; }
    //返回当前HashMap的容量
    final int capacity() {
        return (table != null) ? table.length :
            (threshold > 0) ? threshold :
            DEFAULT_INITIAL_CAPACITY;
    }

    private void writeObject(java.io.ObjectOutputStream s)
        throws IOException {
        int buckets = capacity();
        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();
        s.writeInt(buckets);
        s.writeInt(size);
        internalWriteEntries(s);
    }

    private void readObject(java.io.ObjectInputStream s)
        throws IOException, ClassNotFoundException {
        // Read in the threshold (ignored), loadfactor, and any hidden stuff
        s.defaultReadObject();
        reinitialize();
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new InvalidObjectException("Illegal load factor: " +
                                             loadFactor);
        s.readInt();                // Read and ignore number of buckets
        int mappings = s.readInt(); // Read number of mappings (size)
        if (mappings < 0)
            throw new InvalidObjectException("Illegal mappings count: " +
                                             mappings);
        else if (mappings > 0) { // (if zero, use defaults)
            // Size the table using given load factor only if within
            // range of 0.25...4.0
            float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
            float fc = (float)mappings / lf + 1.0f;
            int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                       DEFAULT_INITIAL_CAPACITY :
                       (fc >= MAXIMUM_CAPACITY) ?
                       MAXIMUM_CAPACITY :
                       tableSizeFor((int)fc));
            float ft = (float)cap * lf;
            threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                         (int)ft : Integer.MAX_VALUE);
            @SuppressWarnings({"rawtypes","unchecked"})
                Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
            table = tab;

            // Read the keys and values, and put the mappings in the HashMap
            for (int i = 0; i < mappings; i++) {
                @SuppressWarnings("unchecked")
                    K key = (K) s.readObject();
                @SuppressWarnings("unchecked")
                    V value = (V) s.readObject();
                putVal(hash(key), key, value, false, false);
            }
        }
    }

    /* ------------------------------------------------------------ */
    // iterators

    //HashMap的抽象迭代器,是实现KeyIterator、ValueIterator、EntryIterator的基础
    abstract class HashIterator {
    	//下一个节点的指针
        Node<K,V> next;        // next entry to return
        //当前节点的指针
        Node<K,V> current;     // current entry
        //记录当前结构的改变次数,用于触发快速失败机制ConcurrentModificationException
        int expectedModCount;  // for fast-fail
        //当前索引位置
        int index;             // current slot

        HashIterator() {
            expectedModCount = modCount;
            Node<K,V>[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // 将next指针前进到table中第一个不为null的节点
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }
        //介绍略
        public final boolean hasNext() {
            return next != null;
        }
        //迭代取得节点,并使next指向其他节点
        final Node<K,V> nextNode() {
            Node<K,V>[] t;
            Node<K,V> e = next;
            //迭代过程中使用非迭代器方法造成HashMap结构次数改变则触发快速失败机制,抛ConcurrentModificationException
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            //next = (current = e).next == null表示只有当table的index位置上有且仅有一个节点
            //的时候,index才会向后移动递增,若table的index位置上存在单链表or红黑树(有hash冲突),这时
            //候next指针会指向单链表or红黑树的下一个节点
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }
        //迭代移除当前节点
        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            //跟上面一样,触发了快速失败机制,抛ConcurrentModificationException
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            //从HashMap中移除该节点
            removeNode(hash(key), key, null, false, false);
            //expectedModCount重新赋值,便不会触发快速失败机制,抛ConcurrentModificationException,
            //迭代器remove之所以不会快速失败就是因为有同步结构改变次数到迭代器中,而迭代器之外的结构次数改
            //变没同步到迭代器中
            expectedModCount = modCount;
        }
    }

    //HashMap的key的迭代器
    final class KeyIterator extends HashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().key; }
    }

    //HashMap的value的迭代器
    final class ValueIterator extends HashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }

    //HashMap的Entry的迭代器
    final class EntryIterator extends HashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

    /* ------------------------------------------------------------ */
    // spliterators
    //HashMap的可分割迭代器,阿西吧,这个暂时先跳过,以后需要用到再研究,可参考ArrayList与LinkedList中的
    static class HashMapSpliterator<K,V> {
        final HashMap<K,V> map;
        Node<K,V> current;          // current node
        int index;                  // current index, modified on advance/split
        int fence;                  // one past last index
        int est;                    // size estimate
        int expectedModCount;       // for comodification checks

        HashMapSpliterator(HashMap<K,V> m, int origin,
                           int fence, int est,
                           int expectedModCount) {
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                HashMap<K,V> m = map;
                est = m.size;
                expectedModCount = m.modCount;
                Node<K,V>[] tab = m.table;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }
    //同HashMapSpliterator
    static final class KeySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<K> {
        KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                       int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public KeySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                        expectedModCount);
        }

        public void forEachRemaining(Consumer<? super K> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.key);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super K> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        K k = current.key;
                        current = current.next;
                        action.accept(k);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
        }
    }
    //同HashMapSpliterator
    static final class ValueSpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<V> {
        ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.value);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        V v = current.value;
                        current = current.next;
                        action.accept(v);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
        }
    }
    //同HashMapSpliterator
    static final class EntrySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<Map.Entry<K,V>> {
        EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        Node<K,V> e = current;
                        current = current.next;
                        action.accept(e);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
        }
    }

    /* ------------------------------------------------------------ */
    // LinkedHashMap support
    // Create a regular (non-tree) node
    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
        return new Node<>(hash, key, value, next);
    }

    // For conversion from TreeNodes to plain nodes
    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        return new Node<>(p.hash, p.key, p.value, next);
    }

    // Create a tree bin node
    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        return new TreeNode<>(hash, key, value, next);
    }

    // For treeifyBin
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }

    /**
     * Reset to initial default state.  Called by clone and readObject.
     */
    void reinitialize() {
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

    // Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess(Node<K,V> p) { }
    void afterNodeInsertion(boolean evict) { }
    void afterNodeRemoval(Node<K,V> p) { }

    // Called only from writeObject, to ensure compatible ordering.
    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
        Node<K,V>[] tab;
        if (size > 0 && (tab = table) != null) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    s.writeObject(e.key);
                    s.writeObject(e.value);
                }
            }
        }
    }

    /* ------------------------------------------------------------ */
    // Tree bins

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }

        /**
         * 返回红黑树的根节点
         */
        final TreeNode<K,V> root() {
        	//往上遍历红黑树
            for (TreeNode<K,V> r = this, p;;) {
            	//根节点没有parent节点
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * 确保给定的根节点是红黑树的第一个节点
         */
        static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                if (root != first) {
                    Node<K,V> rn;
                    tab[index] = root;
                    TreeNode<K,V> rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode<K,V>)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         */
        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         */
        final TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         *当两个对象无法通过比较器进行大小比较时,该方法会先通过类名比较,
         *若类名比较不成功(即结果为0)时,则调用系统的本地方法生成hashCode
         *进行比较并返回最终比较结果
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
            	//
                (d = a.getClass().getName().
                 compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                     -1 : 1);
            return d;
        }

        /**
         * Forms tree of the nodes linked from this node.
         * @return root of tree
         */
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                //若红黑树的根节点为null,则将第一个节点作为根节点
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    //从根节点开始遍历红黑树,确定当前节点在红黑树中的位置
                    for (TreeNode<K,V> p = root;;) {
                        int dir;//存放当前节点与红黑树其他节点的比较结果,小于存1,小于存-1,等于存0
                        int ph;
                        K pk = p.key;
                        //若当前节点hash值小于节点p的hash值
                        if ((ph = p.hash) > h)
                            dir = -1;
                        //若当前节点hash值大于节点p的hash值
                        else if (ph < h)
                            dir = 1;
                        //若不能根据hash值来比较,即hash值相等
                        else if ((kc == null &&
                        		   //取得当前节点key的比较器类型
                                  (kc = comparableClassFor(k)) == null) ||
                                  //比较当前节点key与p的key的大小(大于返回1,小于返回-1,其余返回0)
                                 (dir = compareComparables(kc, k, pk)) == 0)
                        	//若else if中比较结果还是为0,即无法比较,则使用tieBreakOrder方法进行比较并返回最终结果
                            dir = tieBreakOrder(k, pk);
                        
                        TreeNode<K,V> xp = p;
                        //若节点p的左节点有位置且dir<=0,则放到节点p的左节点,
                        //若节点p的右节点有位置且dir>0,则放到节点p的右节点,否
                        //则遍历下一个节点重复比较,直到有存在满足条件的位置
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        	//设置x的parent节点
                            x.parent = xp;
                            //dir<=0,放到左节点
                            if (dir <= 0)
                                xp.left = x;
                            //dir>0,放到右节点
                            else
                                xp.right = x;
                            //插入操作发生后对红黑树进行旋转保证平衡
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            //确保转换后的根节点是红黑树的第一个节点
            moveRootToFront(tab, root);
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final Node<K,V> untreeify(HashMap<K,V> map) {
            Node<K,V> hd = null, tl = null;
            for (Node<K,V> q = this; q != null; q = q.next) {
                Node<K,V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         */
        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode<K,V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode<K,V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode<K,V> sr = s.right;
                TreeNode<K,V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode<K,V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode<K,V> pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                TreeNode<K,V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR

        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                              TreeNode<K,V> p) {
            TreeNode<K,V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                               TreeNode<K,V> p) {
            TreeNode<K,V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                    TreeNode<K,V> x) {
            x.red = true;
            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                                   TreeNode<K,V> x) {
            for (TreeNode<K,V> xp, xpl, xpr;;)  {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (x.red) {
                    x.red = false;
                    return root;
                }
                else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                            (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        }
                        else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                    null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                }
                else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                            (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        }
                        else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                    null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         */
        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                tb = t.prev, tn = (TreeNode<K,V>)t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

}
关于红黑树部分上面源码没介绍到,先占个坑,后续补上