当先锋百科网

首页 1 2 3 4 5 6 7

卷积神经网络每层提取的特征是什么样的

卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。

图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。

这些映射图再进过滤波得到C3层。这个层级结构再和S2一样产生S4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。

一般地,C层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。

特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。

卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力。

谷歌人工智能写作项目:神经网络伪原创

关于卷积神经网络对一维信号的特征提取问题

你好,对信号的特征提取在数学上看其实就是做一个滤波的运算,实际上都是通过卷积来实现的写作猫

下面是一个matlab的实现:functionr=my_conv(a,b)m=length(a);n=length(b);r=zeros(1,m+n-1);fork=1:mc=a(k)*b;d=r(1,k:k+n-1);d=d+c;r(1,k:k+n-1)=d;end。

输入层是几维的输出层是几维的

输入层是几维的输出层是第n层,等于3n-2,3n-1,3n。虽是3层神经网络,但是去叫做两层BP网络,因为输入层一般不算做一层。

n就该取2,s1就是隐含层节点数,选取的公式是Hornik提出的公式,可以算的s1取值范围,到时自己选取合适值,s2就是你输出层节点数,也就是输出维数。

输出层特点:不论何种类型的人工神经网络,它们共同的特点是,大规模并行处理,分布式存储,弹性拓扑,高度冗余和非线性运算。因而具有很髙的运算速度,很强的联想能力,很强的适应性,很强的容错能力和自组织能力。

这些特点和能力构成了人工神经网络模拟智能活动的技术基础。并在广阔的领域获得了重要的应用。

例如,在通信领域,人工神经网络可以用于数据压缩、图像处理、矢量编码、差错控制(纠错和检错编码)、自适应信号处理、自适应均衡、信号检测、模式识别、ATM流量控制、路由选择、通信网优化和智能网管理等等。

卷积神经网络中三维卷积核对应的偏置应该是几维的,是一个数还是几维的?

如何利用卷积神经网络提取图像特征

卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。

2、基于卷积网络的人脸检测卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。

它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。

3、文字识别系统在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。

然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

为什么浅层神经网络提取特征的能力不强

BP神经网络、离散Hopfield网络、LVQ神经网络等等都可以。

BP(BackPropagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。

2.Hopfiled神经网络是一种递归神经网络,由约翰·霍普菲尔德在1982年发明。Hopfield网络是一种结合存储系统和二元系统的神经网络。

它保证了向局部极小的收敛,但收敛到错误的局部极小值(localminimum),而非全局极小(globalminimum)的情况也可能发生。Hopfiled网络也提供了模拟人类记忆的模型。

3.LVQ神经网络由三层组成,即输入层、隐含层和输出层,网络在输入层与隐含层间为完全连接,而在隐含层与输出层间为部分连接,每个输出层神经元与隐含层神经元的不同组相连接。

隐含层和输出层神经元之间的连接权值固定为1。输入层和隐含层神经元间连接的权值建立参考矢量的分量(对每个隐含神经元指定一个参考矢量)。在网络训练过程中,这些权值被修改。

隐含层神经元(又称为Kohnen神经元)和输出神经元都具有二进制输出值。

当某个输入模式被送至网络时,参考矢量最接近输入模式的隐含神经元因获得激发而赢得竞争,因而允许它产生一个“1”,而其它隐含层神经元都被迫产生“0”。

与包含获胜神经元的隐含层神经元组相连接的输出神经元也发出“1”,而其它输出神经元均发出“0”。产生“1”的输出神经元给出输入模式的类,由此可见,每个输出神经元被用于表示不同的类。