当先锋百科网

首页 1 2 3 4 5 6 7

决策树算法

一、决策树算法简介

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、决策树分类原理

1.熵

概念

在这里插入图片描述
在这里插入图片描述

案例

在这里插入图片描述
在这里插入图片描述

2.决策树的划分依据一----信息增益

概念

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

案例:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.决策树的划分依据二----信息增益率

概念

在这里插入图片描述

案例

案例一

在这里插入图片描述
在这里插入图片描述

案例二

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

为什么使用C4.5要好

在这里插入图片描述

4.决策树的划分依据三 ----基尼值和基尼指数

概念

在这里插入图片描述

案例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.小结

常见决策树的启发函数比较

在这里插入图片描述
在这里插入图片描述

ID3 算法

在这里插入图片描述

C4.5算法

在这里插入图片描述

CART算法

在这里插入图片描述

多变量决策树(multi-variate decision tree)

在这里插入图片描述

决策树变量的两种类型:

在这里插入图片描述

如何评估分割点的好坏?

在这里插入图片描述

三、cart剪枝

1.为什么要剪枝

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.常用的减枝方法

在这里插入图片描述

预剪枝

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

后剪枝:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.小结

在这里插入图片描述

四、特征工程-特征提取

在这里插入图片描述

1.特征提取

定义

在这里插入图片描述

特征提取API

在这里插入图片描述

2.字典特征提取

在这里插入图片描述

应用

在这里插入图片描述

流程分析

在这里插入图片描述

from sklearn.feature_extraction import DictVectorizer

def dict_demo():
    """
    对字典类型的数据进行特征抽取
    :return: None
    """
    data = [{'city': '北京','temperature':100}, {'city': '上海','temperature':60}, {'city': '深圳','temperature':30}]
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=False)
    # 2、调用fit_transform
    data = transfer.fit_transform(data)
    print("返回的结果:\n", data)
    # 打印特征名字
    print("特征名字:\n", transfer.get_feature_names())

    return None

在这里插入图片描述
在这里插入图片描述

总结

对于特征当中存在类别信息的我们都会做one-hot编码处理

3.文本特征提取

在这里插入图片描述

应用

在这里插入图片描述

流程分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

jieba分词处理

在这里插入图片描述

案例分析

在这里插入图片描述

from sklearn.feature_extraction.text import CountVectorizer
import jieba

def cut_word(text):
    """
    对中文进行分词
    "我爱北京天安门"————>"我 爱 北京 天安门"
    :param text:
    :return: text
    """
    # 用结巴对中文字符串进行分词
    text = " ".join(list(jieba.cut(text)))

    return text

def text_chinese_count_demo2():
    """
    对中文进行特征抽取
    :return: None
    """
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]
    # 将原始数据转换成分好词的形式
    text_list = []
    for sent in data:
        text_list.append(cut_word(sent))
    print(text_list)

    # 1、实例化一个转换器类
    # transfer = CountVectorizer(sparse=False)
    transfer = CountVectorizer()
    # 2、调用fit_transform
    data = transfer.fit_transform(text_list)
    print("文本特征抽取的结果:\n", data.toarray())
    print("返回特征名字:\n", transfer.get_feature_names())

    return None

返回结果:

Building prefix dict from the default dictionary ...
Dumping model to file cache /var/folders/mz/tzf2l3sx4rgg6qpglfb035_r0000gn/T/jieba.cache
Loading model cost 1.032 seconds.
['一种 还是 一种 今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。', '我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。', '如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。']
Prefix dict has been built succesfully.
文本特征抽取的结果:
 [[2 0 1 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 2 0 1 0 2 1 0 0 0 1 1 0 0 1 0]
 [0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1 0 1]
 [1 1 0 0 4 3 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 2 1 0 0 1 0 0 0]]
返回特征名字:
 ['一种', '不会', '不要', '之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '还是', '这样']

在这里插入图片描述

Tf-idf文本特征提取

在这里插入图片描述

公式

在这里插入图片描述

案例
from sklearn.feature_extraction.text import TfidfVectorizer
import jieba

def cut_word(text):
    """
    对中文进行分词
    "我爱北京天安门"————>"我 爱 北京 天安门"
    :param text:
    :return: text
    """
    # 用结巴对中文字符串进行分词
    text = " ".join(list(jieba.cut(text)))

    return text

def text_chinese_tfidf_demo():
    """
    对中文进行特征抽取
    :return: None
    """
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]
    # 将原始数据转换成分好词的形式
    text_list = []
    for sent in data:
        text_list.append(cut_word(sent))
    print(text_list)

    # 1、实例化一个转换器类
    # transfer = CountVectorizer(sparse=False)
    transfer = TfidfVectorizer(stop_words=['一种', '不会', '不要'])
    # 2、调用fit_transform
    data = transfer.fit_transform(text_list)
    print("文本特征抽取的结果:\n", data.toarray())
    print("返回特征名字:\n", transfer.get_feature_names())

    return None

返回结果:

Building prefix dict from the default dictionary ...
Loading model from cache /var/folders/mz/tzf2l3sx4rgg6qpglfb035_r0000gn/T/jieba.cache
Loading model cost 0.856 seconds.
Prefix dict has been built succesfully.
['一种 还是 一种 今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。', '我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。', '如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。']
文本特征抽取的结果:
 [[ 0.          0.          0.          0.43643578  0.          0.          0.
   0.          0.          0.21821789  0.          0.21821789  0.          0.
   0.          0.          0.21821789  0.21821789  0.          0.43643578
   0.          0.21821789  0.          0.43643578  0.21821789  0.          0.
   0.          0.21821789  0.21821789  0.          0.          0.21821789
   0.        ]
 [ 0.2410822   0.          0.          0.          0.2410822   0.2410822
   0.2410822   0.          0.          0.          0.          0.          0.
   0.          0.2410822   0.55004769  0.          0.          0.          0.
   0.2410822   0.          0.          0.          0.          0.48216441
   0.          0.          0.          0.          0.          0.2410822
   0.          0.2410822 ]
 [ 0.          0.644003    0.48300225  0.          0.          0.          0.
   0.16100075  0.16100075  0.          0.16100075  0.          0.16100075
   0.16100075  0.          0.12244522  0.          0.          0.16100075
   0.          0.          0.          0.16100075  0.          0.          0.
   0.3220015   0.16100075  0.          0.          0.16100075  0.          0.
   0.        ]]
返回特征名字:
 ['之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '还是', '这样']

Tf-idf的重要性

分类机器学习算法进行文章分类中前期数据处理方式

4.小结

在这里插入图片描述

五、决策树算法api

在这里插入图片描述

六、案例:泰坦尼克号乘客生存预测

1.案例背景

在这里插入图片描述

2.步骤分析

在这里插入图片描述

3.代码实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.决策树可视化

保存树的结构到dot文件

在这里插入图片描述

dot文件当中的内容如下

digraph Tree {
node [shape=box] ;
0 [label="petal length (cm) <= 2.45\nentropy = 1.584\nsamples = 112\nvalue = [39, 37, 36]"] ;
1 [label="entropy = 0.0\nsamples = 39\nvalue = [39, 0, 0]"] ;
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
2 [label="petal width (cm) <= 1.75\nentropy = 1.0\nsamples = 73\nvalue = [0, 37, 36]"] ;
0 -> 2 [labeldistance=2.5, labelangle=-45, headlabel="False"] ;
3 [label="petal length (cm) <= 5.05\nentropy = 0.391\nsamples = 39\nvalue = [0, 36, 3]"] ;
2 -> 3 ;
4 [label="sepal length (cm) <= 4.95\nentropy = 0.183\nsamples = 36\nvalue = [0, 35, 1]"] ;
3 -> 4 ;
5 [label="petal length (cm) <= 3.9\nentropy = 1.0\nsamples = 2\nvalue = [0, 1, 1]"] ;
4 -> 5 ;
6 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1, 0]"] ;
5 -> 6 ;
7 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 0, 1]"] ;
5 -> 7 ;
8 [label="entropy = 0.0\nsamples = 34\nvalue = [0, 34, 0]"] ;
4 -> 8 ;
9 [label="petal width (cm) <= 1.55\nentropy = 0.918\nsamples = 3\nvalue = [0, 1, 2]"] ;
3 -> 9 ;
10 [label="entropy = 0.0\nsamples = 2\nvalue = [0, 0, 2]"] ;
9 -> 10 ;
11 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1, 0]"] ;
9 -> 11 ;
12 [label="petal length (cm) <= 4.85\nentropy = 0.191\nsamples = 34\nvalue = [0, 1, 33]"] ;
2 -> 12 ;
13 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1, 0]"] ;
12 -> 13 ;
14 [label="entropy = 0.0\nsamples = 33\nvalue = [0, 0, 33]"] ;
12 -> 14 ;
}

那么这个结构不能看清结构,所以可以在一个网站上显示

网站显示结构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.决策树总结

在这里插入图片描述

6.小结

在这里插入图片描述

七、回归决策树

在这里插入图片描述

1.原理概述

在这里插入图片描述
在这里插入图片描述

2.算法描述

在这里插入图片描述

3.简单实例

在这里插入图片描述

实例计算过程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

回归决策树和线性回归对比

import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn import linear_model

# 生成数据
x = np.array(list(range(1, 11))).reshape(-1, 1)
y = np.array([5.56, 5.70, 5.91, 6.40, 6.80, 7.05, 8.90, 8.70, 9.00, 9.05])

# 训练模型
model1 = DecisionTreeRegressor(max_depth=1)
model2 = DecisionTreeRegressor(max_depth=3)
model3 = linear_model.LinearRegression()
model1.fit(x, y)
model2.fit(x, y)
model3.fit(x, y)

# 模型预测
X_test = np.arange(0.0, 10.0, 0.01).reshape(-1, 1)  # 生成1000个数,用于预测模型
X_test.shape
y_1 = model1.predict(X_test)
y_2 = model2.predict(X_test)
y_3 = model3.predict(X_test)

# 结果可视化
plt.figure(figsize=(10, 6), dpi=100)
plt.scatter(x, y, label="data")
plt.plot(X_test, y_1,label="max_depth=1")
plt.plot(X_test, y_2, label="max_depth=3")
plt.plot(X_test, y_3, label='liner regression')

plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()

plt.show()

结果展示
在这里插入图片描述

4.小结

在这里插入图片描述