当先锋百科网

首页 1 2 3 4 5 6 7

Go 教程

gRPC 基础: Go

本教程提供了 Go 程序员如何使用 gRPC 的指南。

通过学习教程中例子,你可以学会如何:

  • 在一个 .proto 文件内定义服务。
  • 用 protocol buffer 编译器生成服务器和客户端代码。
  • 使用 gRPC 的 Go API 为你的服务实现一个简单的客户端和服务器。

假设你已经阅读了概览 并且熟悉protocol buffers。 注意,教程中的例子使用的是 protocol buffers 语言的 proto3 版本,它目前只是 alpha 版:可以在 proto3 语言指南和 protocol buffers 的 Github 仓库的版本注释发现更多关于新版本的内容。

这算不上是一个在 Go 中使用 gRPC 的综合指南:以后会有更多的参考文档.

为什么使用 gRPC?

我们的例子是一个简单的路由映射的应用,它允许客户端获取路由特性的信息,生成路由的总结,以及交互路由信息,如服务器和其他客户端的流量更新。

有了 gRPC, 我们可以一次性的在一个 .proto 文件中定义服务并使用任何支持它的语言去实现客户端和服务器,反过来,它们可以在各种环境中,从Google的服务器到你自己的平板电脑—— gRPC 帮你解决了不同语言及环境间通信的复杂性.使用 protocol buffers 还能获得其他好处,包括高效的序列号,简单的 IDL 以及容易进行接口更新。

例子的代码和设置

教程的代码在这里 grpc/grpc-go/examples/cpp/route_guide。 要下载例子,通过运行下面的命令去克隆grpc-go代码库:

$ go get google.golang.org/grpc

然后改变当前的目录到 grpc-go/examples/route_guide:

$ cd $GOPATH/src/google.golang.org/grpc/examples/route_guide

你还需要安装生成服务器和客户端的接口代码相关工具-如果你还没有安装的话,请查看下面的设置指南 Go快速开始指南

定义服务

我们的第一步(可以从概览中得知)是使用 protocol buffers去定义 gRPC service 和方法 request 以及 response 的类型。你可以在examples/protos/route_guide.proto看到完整的 .proto 文件。

要定义一个服务,你必须在你的 .proto 文件中指定 service

service RouteGuide {
   ...
}

然后在你的服务中定义 rpc 方法,指定请求的和响应类型。gRPC 允许你定义4种类型的 service 方法,这些都在 RouteGuide 服务中使用:

  • 一个 简单 RPC , 客户端使用存根发送请求到服务器并等待响应返回,就像平常的函数调用一样。
   // Obtains the feature at a given position.
   rpc GetFeature(Point) returns (Feature) {}
  • 一个 服务器端流式 RPC , 客户端发送请求到服务器,拿到一个流去读取返回的消息序列。 客户端读取返回的流,直到里面没有任何消息。从例子中可以看出,通过在 响应 类型前插入 stream 关键字,可以指定一个服务器端的流方法。
  // Obtains the Features available within the given Rectangle.  Results are
  // streamed rather than returned at once (e.g. in a response message with a
  // repeated field), as the rectangle may cover a large area and contain a
  // huge number of features.
  rpc ListFeatures(Rectangle) returns (stream Feature) {}
  • 一个 客户端流式 RPC , 客户端写入一个消息序列并将其发送到服务器,同样也是使用流。一旦客户端完成写入消息,它等待服务器完成读取返回它的响应。通过在 请求 类型前指定 stream 关键字来指定一个客户端的流方法。
  // Accepts a stream of Points on a route being traversed, returning a
  // RouteSummary when traversal is completed.
  rpc RecordRoute(stream Point) returns (RouteSummary) {}
  • 一个 双向流式 RPC 是双方使用读写流去发送一个消息序列。两个流独立操作,因此客户端和服务器可以以任意喜欢的顺序读写:比如, 服务器可以在写入响应前等待接收所有的客户端消息,或者可以交替的读取和写入消息,或者其他读写的组合。 每个流中的消息顺序被预留。你可以通过在请求和响应前加 stream 关键字去制定方法的类型。
  // Accepts a stream of RouteNotes sent while a route is being traversed,
  // while receiving other RouteNotes (e.g. from other users).
  rpc RouteChat(stream RouteNote) returns (stream RouteNote) {}

我们的 .proto 文件也包含了所有请求的 protocol buffer 消息类型定义以及在服务方法中使用的响 应类型——比如,下面的Point消息类型:

// Points are represented as latitude-longitude pairs in the E7 representation
// (degrees multiplied by 10**7 and rounded to the nearest integer).
// Latitudes should be in the range +/- 90 degrees and longitude should be in
// the range +/- 180 degrees (inclusive).
message Point {
  int32 latitude = 1;
  int32 longitude = 2;
}

生成客户端和服务器端代码

接下来我们需要从 .proto 的服务定义中生成 gRPC 客户端和服务器端的接口。我们通过 protocol buffer 的编译器 protoc 以及一个特殊的 gRPC Go 插件来完成。

简单起见,我们提供一个 bash 脚本 帮你用合适的插件,输入,输出去运行 protoc(如果你想自己去运行,确保你已经安装了 protoc,并且请遵循下面的 gRPC-Go 安装指南)来操作:

$ codegen.sh route_guide.proto

实际上运行的是:

$ protoc --go_out=plugins=grpc:. route_guide.proto

运行这个命令可以在当前目录中生成下面的文件:

  • route_guide.pb.go

这些包括:

  • 所有用于填充,序列化和获取我们请求和响应消息类型的 protocol buffer 代码
  • 一个为客户端调用定义在RouteGuide服务的方法的接口类型(或者 存根 )
  • 一个为服务器使用定义在RouteGuide服务的方法去实现的接口类型(或者 存根 )

创建服务器

首先来看看我们如何创建一个 RouteGuide 服务器。如果你只对创建 gRPC 客户端感兴趣,你可以跳 过这个部分,直接到创建客户端 (当然你也可能发现它也很有意思)。

RouteGuide 服务工作有两个部分:

  • 实现我们服务定义的生成的服务接口:做我们的服务的实际的“工作”。
  • 运行一个 gRPC 服务器,监听来自客户端的请求并返回服务的响应。

你可以从grpc-go/examples/route_guide/server/server.go看到我们的 RouteGuide 服务器的实现代码。现在让我们近距离研究它是如何工作的。

实现RouteGuide

我们可以看出,服务器有一个实现了生成的 RouteGuideServer 接口的 routeGuideServer 结构类型:

type routeGuideServer struct {
        ...
}
...

func (s *routeGuideServer) GetFeature(ctx context.Context, point *pb.Point) (*pb.Feature, error) {
        ...
}
...

func (s *routeGuideServer) ListFeatures(rect *pb.Rectangle, stream pb.RouteGuide_ListFeaturesServer) error {
        ...
}
...

func (s *routeGuideServer) RecordRoute(stream pb.RouteGuide_RecordRouteServer) error {
        ...
}
...

func (s *routeGuideServer) RouteChat(stream pb.RouteGuide_RouteChatServer) error {
        ...
}
...

简单 RPC

routeGuideServer 实现了我们所有的服务方法。首先让我们看看最简单的类型 GetFeature,它从客户端拿到一个 Point 对象,然后从返回包含从数据库拿到的feature信息的 Feature.

func (s *routeGuideServer) GetFeature(ctx context.Context, point *pb.Point) (*pb.Feature, error) {
    for _, feature := range s.savedFeatures {
        if proto.Equal(feature.Location, point) {
            return feature, nil
        }
    }
    // No feature was found, return an unnamed feature
    return &pb.Feature{"", point}, nil
}

该方法传入了 RPC 的上下文对象,以及客户端的 Point protocol buffer请求。它返回了一个包含响应信息和errorFeature protocol buffer对象。在方法中我们用适当的信息填充 Feature,然后将其和一个nil错误一起返回,告诉 gRPC 我们完成了对 RPC 的处理,并且 Feature 可以返回给客户端。

服务器端流式 RPC

现在让我们来看看我们的一种流式 RPC。 ListFeatures 是一个服务器端的流式 RPC,所以我们需要将多个 Feature 发回给客户端。

func (s *routeGuideServer) ListFeatures(rect *pb.Rectangle, stream pb.RouteGuide_ListFeaturesServer) error {
    for _, feature := range s.savedFeatures {
        if inRange(feature.Location, rect) {
            if err := stream.Send(feature); err != nil {
                return err
            }
        }
    }
    return nil
}

如你所见,这里的请求对象是一个 Rectangle,客户端期望从中找到 Feature,这次我们得到了一个请求对象和一个特殊的RouteGuide_ListFeaturesServer来写入我们的响应,而不是得到方法参数中的简单请求和响应对象。

在这个方法中,我们填充了尽可能多的 Feature 对象去返回,用它们的 Send() 方法把它们写入 RouteGuide_ListFeaturesServer。最后,在我们的简单 RPC中,我们返回了一个 nil 错误告诉 gRPC 响应的写入已经完成。如果在调用过程中发生任何错误,我们会返回一个非 nil 的错误;gRPC 层会将其转化为合适的 RPC 状态通过线路发送。

客户端流式 RPC

现在让我们看看稍微复杂点的东西:客户端流方法 RecordRoute,我们通过它可以从客户端拿到一个 Point 的流,其中包括它们路径的信息。如你所见,这次这个方法没有请求参数。相反的,它拿到了一个 RouteGuide_RecordRouteServer 流,服务器可以用它来同时读 写消息——它可以用自己的 Recv() 方法接收客户端消息并且用 SendAndClose() 方法返回它的单个响应。

func (s *routeGuideServer) RecordRoute(stream pb.RouteGuide_RecordRouteServer) error {
    var pointCount, featureCount, distance int32
    var lastPoint *pb.Point
    startTime := time.Now()
    for {
        point, err := stream.Recv()
        if err == io.EOF {
            endTime := time.Now()
            return stream.SendAndClose(&pb.RouteSummary{
                PointCount:   pointCount,
                FeatureCount: featureCount,
                Distance:     distance,
                ElapsedTime:  int32(endTime.Sub(startTime).Seconds()),
            })
        }
        if err != nil {
            return err
        }
        pointCount++
        for _, feature := range s.savedFeatures {
            if proto.Equal(feature.Location, point) {
                featureCount++
            }
        }
        if lastPoint != nil {
            distance += calcDistance(lastPoint, point)
        }
        lastPoint = point
    }
}

在方法体中,我们使用 RouteGuide_RecordRouteServerRecv() 方法去反复读取客户端的请求到一个请求对象(在这个场景下是 Point),直到没有更多的消息:服务器需要在每次调用后检查 Read() 返回的错误。如果返回值为 nil,流依然完好,可以继续读取;如果返回值为 io.EOF,消息流结束,服务器可以返回它的 RouteSummary。如果它还有其它值,我们原样返回错误,gRPC 层会把它转换为 RPC 状态。

双向流式 RPC

最后,让我们看看双向流式 RPC RouteChat()

func (s *routeGuideServer) RouteChat(stream pb.RouteGuide_RouteChatServer) error {
    for {
        in, err := stream.Recv()
        if err == io.EOF {
            return nil
        }
        if err != nil {
            return err
        }
        key := serialize(in.Location)
                ... // look for notes to be sent to client
        for _, note := range s.routeNotes[key] {
            if err := stream.Send(note); err != nil {
                return err
            }
        }
    }
}

这次我们得到了一个 RouteGuide_RouteChatServer 流,和我们的客户端流的例子一样,它可以用来读写消息。但是,这次当客户端还在往 它们 的消息流中写入消息时,我们通过方法的流返回值。

这里读写的语法和客户端流方法相似,除了服务器会使用流的 Send() 方法而不是 SendAndClose(),因为它需要写多个响应。虽然客户端和服务器端总是会拿到对方写入时顺序的消息,它们可以以任意顺序读写——流的操作是完全独立的。

启动服务器

一旦我们实现了所有的方法,我们还需要启动一个gRPC服务器,这样客户端才可以使用服务。下面这段代码展示了在我们RouteGuide服务中实现的过程:

flag.Parse()
lis, err := net.Listen("tcp", fmt.Sprintf(":%d", *port))
if err != nil {
        log.Fatalf("failed to listen: %v", err)
}
grpcServer := grpc.NewServer()
pb.RegisterRouteGuideServer(grpcServer, &routeGuideServer{})
... // determine whether to use TLS
grpcServer.Serve(lis)

为了构建和启动服务器,我们需要:

  1. 使用 lis, err := net.Listen("tcp", fmt.Sprintf(":%d", *port)) 指定我们期望客户端请求的监听端口。
  2. 使用grpc.NewServer()创建 gRPC 服务器的一个实例。
  3. 在 gRPC 服务器注册我们的服务实现。
  4. 用服务器 Serve() 方法以及我们的端口信息区实现阻塞等待,直到进程被杀死或者 Stop() 被调用。

创建客户端

在这部分,我们将尝试为 RouteGuide 服务创建一个 Go 的客户端。你可以从grpc-go/examples/route_guide/client/client.go看到我们完整的客户端例子代码.

创建存根

为了调用服务方法,我们首先创建一个 gRPC channel 和服务器交互。我们通过给 grpc.Dial() 传入服务器地址和端口号做到这点,如下:

conn, err := grpc.Dial(*serverAddr)
if err != nil {
    ...
}
defer conn.Close()

你可以使用 DialOptionsgrpc.Dial 中设置授权认证(如, TLS,GCE认证,JWT认证),如果服务有这样的要求的话 —— 但是对于 RouteGuide 服务,我们不用这么做。

一旦 gRPC channel 建立起来,我们需要一个客户端 存根 去执行 RPC。我们通过 .proto 生成的 pb 包提供的 NewRouteGuideClient 方法来完成。

client := pb.NewRouteGuideClient(conn)

调用服务方法

现在让我们看看如何调用服务方法。注意,在 gRPC-Go 中,RPC以阻塞/同步模式操作,这意味着 RPC 调用等待服务器响应,同时要么返回响应,要么返回错误。

简单 RPC

调用简单 RPC GetFeature 几乎是和调用一个本地方法一样直观。

feature, err := client.GetFeature(context.Background(), &pb.Point{409146138, -746188906})
if err != nil {
        ...
}

如你所见,我们调用了前面创建的存根上的方法。在我们的方法参数中,我们创建并且填充了一个请求的 protocol buffer 对象(例子中为 Point)。我们同时传入了一个 context.Context ,在有需要时可以让我们改变 RPC 的行为,比如超时/取消一个正在运行的 RPC。 如果调用没有返回错误,那么我们就可以从服务器返回的第一个返回值中读到响应信息。

log.Println(feature)

服务器端流式 RPC

ListFeatures 就是我们说的服务器端流方法,它会返回地理的Feature 流。 如果你已经读过创建服务器,本节的一些内容也许看上去会很熟悉——流式 RPC 是在客户端和服务器两端以一种类似的方式实现的。

rect := &pb.Rectangle{ ... }  // initialize a pb.Rectangle
stream, err := client.ListFeatures(context.Background(), rect)
if err != nil {
    ...
}
for {
    feature, err := stream.Recv()
    if err == io.EOF {
        break
    }
    if err != nil {
        log.Fatalf("%v.ListFeatures(_) = _, %v", client, err)
    }
    log.Println(feature)
}

在简单 RPC 的例子中,我们给方法传入一个上下文和请求。然而,我们得到返回的是一个 RouteGuide_ListFeaturesClient 实例,而不是一个应答对象。客户端可以使用 RouteGuide_ListFeaturesClient 流去读取服务器的响应。

我们使用 RouteGuide_ListFeaturesClientRecv() 方法去反复读取服务器的响应到一个响应 protocol buffer 对象(在这个场景下是Feature)直到消息读取完毕:每次调用完成时,客户端都要检查从 Recv() 返回的错误 err。如果返回为 nil,流依然完好并且可以继续读取;如果返回为 io.EOF,则说明消息流已经结束;否则就一定是一个通过 err 传过来的 RPC 错误。

客户端流式 RPC

除了我们需要给方法传入一个上下文而后返回 RouteGuide_RecordRouteClient 流以外,客户端流方法 RecordRoute 和服务器端方法类似,它可以用来读 写消息。

// Create a random number of random points
r := rand.New(rand.NewSource(time.Now().UnixNano()))
pointCount := int(r.Int31n(100)) + 2 // Traverse at least two points
var points []*pb.Point
for i := 0; i < pointCount; i++ {
    points = append(points, randomPoint(r))
}
log.Printf("Traversing %d points.", len(points))
stream, err := client.RecordRoute(context.Background())
if err != nil {
    log.Fatalf("%v.RecordRoute(_) = _, %v", client, err)
}
for _, point := range points {
    if err := stream.Send(point); err != nil {
        log.Fatalf("%v.Send(%v) = %v", stream, point, err)
    }
}
reply, err := stream.CloseAndRecv()
if err != nil {
    log.Fatalf("%v.CloseAndRecv() got error %v, want %v", stream, err, nil)
}
log.Printf("Route summary: %v", reply)

RouteGuide_RecordRouteClient 有一个 Send() 方法,我们可以用它来给服务器发送请求。一旦我们完成使用 Send() 方法将客户端请求写入流,就需要调用流的 CloseAndRecv()方法,让 gRPC 知道我们已经完成了写入同时期待返回应答。我们从 CloseAndRecv() 返回的 err 中获得 RPC 的状态。如果状态为nil,那么CloseAndRecv()的第一个返回值将会是合法的服务器应答。

双向流式 RPC

最后,让我们看看双向流式 RPC RouteChat()。 和 RecordRoute 的场景类似,我们只给函数传 入一个上下文对象,拿到可以用来读写的流。但是,当服务器依然在往 他们 的消息流写入消息时,我们 通过方法流返回值。

stream, err := client.RouteChat(context.Background())
waitc := make(chan struct{})
go func() {
    for {
        in, err := stream.Recv()
        if err == io.EOF {
            // read done.
            close(waitc)
            return
        }
        if err != nil {
            log.Fatalf("Failed to receive a note : %v", err)
        }
        log.Printf("Got message %s at point(%d, %d)", in.Message, in.Location.Latitude, in.Location.Longitude)
    }
}()
for _, note := range notes {
    if err := stream.Send(note); err != nil {
        log.Fatalf("Failed to send a note: %v", err)
    }
}
stream.CloseSend()
<-waitc

这里读写的语法和我们的客户端流方法很像,除了在完成调用时,我们会使用流的 CloseSend() 方法。 虽然每一端获取对方信息的顺序和信息被写入的顺序一致,客户端和服务器都可以以任意顺序读写——流的操作是完全独立的。

来试试吧!

假设你在 $GOPATH/src/google.golang.org/grpc/examples/route_guide 目录,要编译和运行服务器,只需要运行:

$ go run server/server.go

同样的,运行客户端:

$ go run client/client.go

python3 asyncio官方文档中文版

事件循环基类事件循环基类事件循环是由asyncio提供的核心执行装置。它提供了多种服务,包括:注册、执行和关闭延时调用(超时)为各种通信创建客户端和服务端传输为一个外部程序通信启动子进程和相关的传输把高成本....

Apache ActiveMQ 官方文档中文版

1 前言ApacheActiveMQ™是最流行和功能强大的开源消息传递和集成模式服务器。ApacheActiveMQ速度快,支持许多跨语言客户端和协议,具有易于使用的企业集成模式和许多高级功能,同时完全支持JMS1.1和J2EE1.4。ApacheAc...

Caffe ImageNet官方文档中文版

文档大部分都是机翻,本人英语未过四级,所以凑合看吧 构建ImageNet本指南旨在让您准备好根据自己的数据训练自己的模型。如果你只是想要一个ImageNet训练的网络,那么注意,由于训练需要很多电能,我们讨厌全球变暖....