当先锋百科网

首页 1 2 3 4 5 6 7

GAN是一种深度学习模型,全称为生成对抗网络(Generative Adversarial Networks)。它由两个神经网络组成:一个生成器网络和一个判别器网络。

什么是GAN(生成对抗网络)?

生成器网络通过学习训练数据的分布,生成新的数据。而判别器网络则尝试区分生成器生成的数据和真实的训练数据。在训练过程中,两个网络相互对抗,生成器网络试图欺骗判别器网络,使其无法准确地区分生成的数据和真实的训练数据,而判别器网络则试图正确地识别哪些数据是真实的。

通过不断地迭代训练,生成器网络逐渐学习到如何生成更逼真的数据,而判别器网络则逐渐变得更加准确。最终,生成器网络可以生成与训练数据相似的新数据,这些数据可以用于图像生成、视频生成、自然语言处理等领域。

GAN是一种非常强大的深度学习模型,它的应用领域非常广泛,包括图像生成、视频生成、语音合成、图像风格转换等等。同时,GAN的训练也非常复杂,需要考虑多个因素,如训练数据的质量、网络结构的设计、超参数的调整等。

免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些人工智能基础入门视频+AI常用框架实战视频、计算机视觉、机器学习、图像识别、NLP、OpenCV、YOLO、pytorch、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。

下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号 321 领取(一定要发暗号 321)

目录

一、人工智能免费视频课程和项目

二、人工智能必读书籍

三、人工智能论文合集

四、机器学习+计算机视觉基础算法教程

 五、深度学习机器学习速查表(共26张)

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

点击下方名片,扫码关注公众号【AI技术星球】发送暗号 321 免费领取文中资料。